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The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation
which originated in geometric surface theory, and has been applied in dynamic meteorol-
ogy, elasticity, geometric optics, image processing and image registration. Solutions can be
singular, in which case standard numerical approaches fail.

In this article we build a finite difference solver for the Monge–Ampère equation, which
converges even for singular solutions. Regularity results are used to select a priori between
a stable, provably convergent monotone discretization and an accurate finite difference
discretization in different regions of the computational domain. This allows singular solu-
tions to be computed using a stable method, and regular solutions to be computed more
accurately. The resulting nonlinear equations are then solved by Newton’s method.

Computational results in two and three-dimensions validate the claims of accuracy and
solution speed. A computational example is presented which demonstrates the necessity of
the use of the monotone scheme near singularities.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solu-
tions. Regularity results are used to select a priori between two discretizations in different regions of the computational do-
main. Near possible singularities, a stable, provably convergent monotone discretization is used. Elsewhere a more accurate
discretization is used. This allows singular solutions to be computed using a stable method, and regular solutions to be com-
puted more accurately. The resulting nonlinear equations are then solved by Newton’s method, which is fast, OðM1:3Þ, where
M is the number of data points, independent of the regularity of the solution.

1.1. The setting for equation

The Monge–Ampère equation is a fully nonlinear Partial Differential Equation (PDE).
detðD2uðxÞÞ ¼ f ðxÞ; for x in X: ðMAÞ
The Monge–Ampère operator, det (D2u), is the determinant of the Hessian of the function u. The equation is augmented by
the convexity constraint
. All rights reserved.

0.
rman@sfu.ca, aoberman@math.sfu.ca (A.M. Oberman).

ese), http://math.sfu.ca/~aoberman (A.M. Oberman).

http://dx.doi.org/10.1016/j.jcp.2010.10.020
mailto:bdf1@sfu.ca
mailto:aoberman@sfu.ca
mailto:aoberman@math.sfu.ca
http://www.divbyzero.ca/froese/
http://math.sfu.ca/~aoberman
http://dx.doi.org/10.1016/j.jcp.2010.10.020
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


B.D. Froese, A.M. Oberman / Journal of Computational Physics 230 (2011) 818–834 819
u is convex; ðCÞ
which is necessary for the equation to be elliptic. The convexity constraint is made explicit for emphasis: it is necessary for
uniqueness of solutions and it is essential for numerical stability.

While other boundary conditions appear naturally in applications, we consider the simplest boundary conditions: the
Dirichlet problem in a convex bounded subset X � Rd with boundary @X,
uðxÞ ¼ gðxÞ; for x on @X: ðDÞ
Under suitable assumptions on the domain and the functions f(x), g(x), recalled in Section 2.1, there exist unique classical (C2)
solutions to (MA), (C). However, when these conditions fail, solutions can be singular. For singular solutions, the correct no-
tion of weak solutions must be used. In this case, novel discretizations and solution methods must be used to approximate
the solution.
1.2. Applications

The PDE (MA) is a geometric equation, which goes back to Monge and Ampère (see [1]). The equation naturally arises in
geometric problems of existence and uniqueness of surfaces with prescribed metrics or curvatures [2,3]. Early applications
identified in [4] include dynamic meteorology, elasticity, and geometric optics [5–8]. For an application of Monge–Ampère
equations in mathematical finance, see [9].

The Monge–Ampère equation arises as the optimality conditions for the problem of optimal mass transport with qua-
dratic cost [1,10,11]. This application of the Monge–Ampère equation has been used in many areas: image registration
[12–14], mesh generation [15–17], reflector design [18], and astrophysics (estimating the shape of the early universe) [19].

The problem here is to find a mapping g(x) that moves the measure l1(x) to l2(y) and minimizes the transportation cost
functional
Z
Rd

x� gðxÞj j2dl1:
The optimal mapping is given by g =ru, where u satisfies the Monge–Ampère equation
detðD2uðxÞÞ ¼ l1ðxÞ=l2ðruðxÞÞ:
In this situation, the Dirichlet boundary condition (D) is replaced by the implicit boundary condition:
gð�Þ : X1 ! X2; ð1Þ
where the sets X1 and X2 are the support of the measures l1, l2. These boundary conditions are difficult to implement
numerically; we are not aware of an implementation using PDE methods. For many applications,both domains are squares,
and a simplifying assumption that edges are mapped to edges allows Neumann boundary conditions to be used. In other
applications, periodic boundary conditions are used.

In other problems, the Monge–Ampère operator appears in an inequality constraint in a variational problem for optimal
mappings where the cost is no longer the transportation cost. Here the operator has the effect of restricting the local area
change on the set of admissible mappings, see [20,21].
1.3. Related numerical works

Despite the number of applications, until recently there have been few numerical publications devoted to solving the
Monge–Ampère equation. We make a distinction between numerical approaches with optimal transportation type boundary
conditions (1) and the standard Dirichlet boundary conditions (D). In the latter case, a number of numerical methods have
been recently proposed for the solution of the Monge–Ampère equation.

An early work is [4], which presents a discretization which converges to the Aleksandrov solution in two-dimensions. An-
other early work by Benamou and Brenier [22] used a fluid mechanical approach to compute the solution to the optimal
transportation problem.

For the problem with Dirichlet boundary conditions which is treated here, a series of papers have recently appeared by
two groups of authors, Dean and Glowinski [23–25], and Feng and Neilan, [26,27]. The methods introduced by these authors
perform best in the regular case and can break down in the singular case. The case of periodic boundary conditions was trea-
ted in [28]. See [29] for a more complete discussion.

Work which has appeared since then include the following. The work of [30] studies the case of periodic boundary con-
ditions in odd-dimensional space. Several different formulations of the equation appear, including a Fourier integral form.
The work of [15] solved the optimal transportation problem for the purpose of applications to mappings. A finite difference
discretization was used with the boundary conditions assumed to be known on a rectangular domain.
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1.4. Numerical challenges

When the conditions for regularity are satisfied, classical solutions can be approximated successfully using a range of
standard techniques (see, for example works such as [23–27]). However, for singular solutions, standard numerical methods
break down: either by becoming unstable, poorly conditioned, or by selecting the wrong (non-convex) solution.

Weak solutions
For singular solutions, the appropriate notion of weak (viscosity or Aleksandrov) solutions must be used. Numerical

methods have been developed which capture weak solutions: Oliker and Prussner, in [4], presented a method which con-
verges to the Aleksandrov solution. One of the authors introduced a finite difference method which converges to the viscos-
ity solution in [31]. Both of these methods were restricted to two-dimensions. In [32] we introduced a monotone
discretization which is valid in arbitrary-dimensions. A proof of convergence to viscosity solutions is provided, as well as
a proof of convergence of Newton’s method.

Convexity
The convexity constraint is necessary for both uniqueness and stability. In particular, the Eq. (MA) fails to be elliptic if u is

non-convex (see Section 2.5), so instabilities can arise if the convexity condition (C) is violated, as demonstrated in Sec-
tion 8.1. Any approximation of (MA) requires some selection principle to choose the convex solution. This selection principle
can be built into the discretization, as in [31], or built into the solution method, as in [29].

Accuracy
The convergent monotone schemes of [31,32] use a wide stencil, and the accuracy of the scheme depends on the direc-

tional resolution, which depends on the width of the stencil. As we demonstrate below, for highly singular solutions, such as
(17), the directional resolution error can dominate. On the other hand, more accurate discretizations, such as standard finite
differences, can be unstable for singular solutions.

Fast solvers
Previous work by the authors and a coauthor [29] investigated fast solvers for (MA). An explicit method was presented which

was moderately fast, independent of the solution time. For regular solutions, a faster (by an order of magnitude) semi-implicit
solution method was introduced (see Section 6.2) but this method was slower (by an order of magnitude) on singular solutions.

2. Analysis and weak solutions

In this section we present relevant regularity results and background analysis. In particular, the regularity results of Sec-
tion 2.1 are used to determine the discretization used in Section 5.

The definition of viscosity solutions and Aleksandrov solutions presented in Sections 2.2, 2.3 are used to make sense of the
weak solutions (15) and (17), respectively.

2.1. Regularity

Under the following conditions, the Monge–Ampère equation is guaranteed to have a unique C2,a solution. Regularity re-
sults for the Monge–Ampère equation have been established in [33–35]. We refer to the book [36] for the following result.
See also [37].
The domain X is strictly convex with boundary @X 2 C2;a:

The boundary values g 2 C2;að@XÞ:
The function f 2 CaðXÞ is strictly positive:

8><
>: ð2Þ
Remark 1. In the extreme case, with f(x) = 0 for all x 2X, the Eq. (MA), (C) reduces to the computation of the convex
envelope of the boundary conditions [38,39]. In this case, solutions may not even be continuous up to the boundary and can
also be non-differentiable in the interior.
Remark 2. The fact that regularity can break down on convex polygons [11,40] is important, since often computations are
performed on a rectangle.
2.2. Viscosity solutions

We recall the definition of viscosity solutions [41], which are defined for the Monge–Ampère equation in [36].
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Definition 1. Let u 2 C(X) be convex and f P 0 be continuous. The function u is a viscosity subsolution (supersolution) of the
Monge–Ampère equation in X if whenever convex / 2 C2(X) and x0 2X are such that (u � /)(x) 6 (P)(u � /)(x0) for all x in a
neighbourhood of x0, then we must have:
detðD2/ðx0ÞÞP ð6Þf ðx0Þ:
The function u is a viscosity solution if it is both a viscosity subsolution and a supersolution.
In the following, we will use the notation
xþ ¼maxðx;0Þ; for x 2 R:
Example 1 (Viscosity solution of Monge–Ampère). We consider an example which will later be solved numerically in two and
three-dimensions (Sections 8, 9). Consider (MA) with solution and f given by:
uðxÞ ¼ 1
2
ðð xj j � 1ÞþÞ2; f ðxÞ ¼ ð1� 1=jxjÞþ:
This function, although it is not a classical C2 solution of the Monge–Ampère equation, is a viscosity solution.
2.3. Aleksandrov solutions

Next we turn our attention to the Aleksandrov solution, which is a more general weak solution than the viscosity solu-
tions. Here f is generally a measure. In this section we give a few essential definitions for the convenience of the reader. More
details can be found in the reference [36].

We begin by recalling the definition of the normal mapping or subdifferential of a function.

Definition 2. The normal mapping (subdifferential) of a function u is the set-valued function @u defined by:
@uðx0Þ ¼ fp : uðxÞP uðx0Þ þ p � ðx� x0Þg; for all x 2 X:
For a set V �X, we define @uðVÞ ¼
S

x2V@uðxÞ.
Now we want to look at a measure generated by the Monge–Ampère operator.

Definition 3. Given a function u 2 C(X), the Monge–Ampère measure associated with u is defined as:
lðVÞ ¼ @uðVÞj j
for any set V �X, where jEj is the Lebesgue measure of the set E.
This measure naturally leads to the notion of the generalized or Aleksandrov solution of the Monge–Ampère equation.

Definition 4. Let l be a Borel measure defined in a convex set X 2 Rd. Then the convex function u is an Aleksandrov solution
of the Monge–Ampère equation
detðD2uÞ ¼ l;
if the Monge–Ampère measure associated with u is equal to the given measure l.
Example 2 (Aleksandrov solution). As an example, we consider the cone and the the scaled Dirac measure
uðxÞ ¼ jxj; lðVÞ ¼ p
Z

V
dðxÞdx:
2.4. A PDE for convexity

The convexity constraint (C) is necessary for uniqueness, since without it, �u is also a solution of (MA).
For a twice continuously differentiable function u, the convexity restriction (C) can be written as D2u is positive definite.

Since we wish to work with less regular solutions, (C) can be enforced by the equation:
k1½D2u�P 0;
understood in the viscosity sense [38,39], where k1[D2u] is the smallest eigenvalue of the Hessian of u.
The convexity constraint can be absorbed into the operator by defining:
detþðMÞ ¼
Yd

j¼1

kþj ð3Þ
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where M is a symmetric matrix, with eigenvalues, k1 6 � � � , 6 kn. Using this notation, (MA), (C) becomes:
detþðD2uðxÞÞ ¼ f ðxÞ; for x in X: ðMAþÞ
Remark 3. Notice that there is a trade off in defining (3): the constraint (C) is eliminated but the operator becomes non-
differentiable near singular matrices.
2.5. Linearization and ellipticity

The linearization of the determinant is given by:
rdetðMÞ � N ¼ traceðMadjNÞ:
Where Madj is the adjugate [42], which is the transpose of the cofactor matrix. The adjugate matrix is positive definite if and
only if M is positive definite. When the matrix M is invertible, the adjugate, Madj, satisfies
Madj ¼ detðMÞM�1: ð4Þ
We now apply these considerations to the linearization of the Monge–Ampère operator. When u 2 C2 we can linearize this
operator as:
rdetðD2uÞ � v ¼ trace ðD2uÞadjD
2v

� �
: ð5Þ
Example 3. In two-dimensions we obtain
rdetðD2uÞv ¼ uxxvyy þ uyyvxx � 2uxyvxy;
which is homogenous of order one in D2u. In dimension d P 2, the linearization is homogeneous order d � 1 in D2u.
The linear operator
L½u� � traceðAðxÞD2uÞ;
is elliptic if the coefficient matrix A(x) is positive definite.

Lemma 1. Let u 2 C2. The linearization of the Monge–Ampère operator, (5) is elliptic if D2u is positive definite or, equivalently, if u
is (strictly) convex.
Remark 4. When the function u fails to be strictly convex, the linearization can be degenerate elliptic, which affects the con-
ditioning of the linear system (5). When the function u is non-convex, the linear system can be unstable.

The definition of a nonlinear elliptic PDE operator generalizes the definition of linear elliptic operator. It also allows for
the operators to be non-differentiable. The operator F(M) is defined on symmetric matrices. In the equation, M will be re-
placed by the Hessian, D2u.

Definition 5. Let the function F(M) be a continuous function defined on symmetric matrices. Then F(M) is elliptic if it satisfies
the monotonicity condition
FðMÞ 6 FðNÞ whenever M 6 N;
where for symmetric matrices M 6 N means xTM x 6 xTN x for all x.
Example 4. The function det+(M) is a non-decreasing function of the eigenvalues, so it is elliptic. The corresponding PDE is
the Monge–Ampère operator det+(D2u).
3. The standard finite difference discretization

We begin by considering the standard finite difference discretization of the Monge–Ampère equation. For brevity, we de-
scribe the discretization in two-dimensions, but this is easily generalized to higher-dimensions.

This discretization does not enforce the convexity condition (C), so it can lead to instabilities. In particular, we show in
Section 8.1 that Newton’s method can become unstable if this discretization is used.

The Monge–Ampère operator has a particularly simple form in two-dimensions:
detðD2uÞ ¼ @
2u
@x2

@2u
@y2 �

@2u
@x@y

 !2

; in X � R2:
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In two-dimensions, the natural discretization of the operator is given by:
MAN½u� � ðDxxuÞðDyyuÞ � ðDxyuÞ2; ðMANÞ
where, writing h for the spatial resolution of the grid,
½Dxxu�ij ¼
1

h2 ðuiþ1;j þ ui�1;j � 2ui;jÞ

½Dyyu�ij ¼
1

h2 ðui;jþ1 þ ui;j�1 � 2ui;jÞ

½Dxyu�ij ¼
1

4h2 ðuiþ1;jþ1 þ ui�1;j�1 � ui�1;jþ1 � uiþ1;j�1Þ:
Remark 5. There is no reason to assume that the standard discretization converges. In fact, the two-dimensional scheme has
multiple solutions. In [29] this discretization was used, but the solvers were designed to select the convex solution.
4. Convergent monotone discretization

The method of [31] describes a discretization of the two-dimensional Monge–Ampère equation that converges to the vis-
cosity solution. In [32] we introduced another discretization, which generalized to higher-dimensions, and also converged to
the viscosity solution. Both methods require the use of a wide stencil scheme, which has an additional discretization param-
eter, the directional resolution, explained below.

In addition to being monotonic, which implies it is provably convergent, the latter method discretizes the convexified version
of the equation, (MA+), which is enough to ensure convergence of Newton’s method. The proof of this result can be found in [32].

In this section we present the convergent discretization, which will be used to build the hybrid solver.

4.1. Wide stencils

When we discretize the operator on a finite difference grid, we approximate the second derivatives by centered finite dif-
ferences (spatial discretization). In addition to the approximation of second directional derivatives by finite differences, we
need to discretize the directions of these derivatives, restricting to directions m that lie on the grid. We call this the direc-
tional discretization.

We consider the finite difference operator for the second directional derivative in the direction m, which lies on the finite
difference grid. These directional derivatives are discretized by simply using finite differences on the grid
Dmmui ¼
1

jmjh2 ðuðxi þ mhÞ þ uðxi � mhÞ � 2uðxiÞÞ:
Depending on the direction of the vector m, this may involve a wide stencil. At points near the boundary of the domain, some
values required by the wide stencil will not be available; see Fig. 1. In these cases, we use interpolation at the boundary to
construct a (lower accuracy) stencil for the second directional derivative; see [31] for more details.
Fig. 1. Wide stencils on a two-dimensional grid.
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Since the discretization considers only a finite number of directions m, there will be an additional term in the consistency
error coming from the angular resolution dh of the stencil. This angular resolution will decrease and approach zero as the
stencil width is increased.

4.2. Discretization of the convexified Monge–Ampère operator

In two-dimensions, the largest and smallest eigenvalues of a symmetric matrix can be represented by the variational
formula
k1½A� ¼min
jmj¼1

mT Am; k2½A� ¼max
jmj¼1

mT Am:
This formula was used in [31] to build a monotone scheme for the Monge–Ampère operator, which is the product of the
eigenvalues of the Hessian, by replacing the min, max over all directions, by a finite number of grid directions.

In higher-dimensions, the formula above does not generalize naturally. Instead, in [32], we used another characterization,
which applied to positive definite matrices.

Lemma 2 (Variational characterization of the determinant). Let A be a d � d symmetric positive definite matrix with eigenvalues
kj and let V be the set of all orthonormal bases of Rd:
V ¼ fðm1; . . . ; mdÞjmj 2 Rd; mi ? mj if i–j; kmjk2 ¼ 1g:
Then the determinant of A is equivalent to
Yd

j¼1

kj ¼ min
ðm1 ;...;mdÞ2V

Yd

j¼1

mT
j Amj:
We use Lemma 2 to characterize the determinant of the Hessian of a convex C2 function / in terms of second directional
derivatives of /.
detðD2/Þ ¼ min
ðm1 ;...;mdÞ2V

Yd

j¼1

mT
j D2/mj ¼ min

ðm1 ;...;mdÞ2V

Yd

j¼1

@2/

@m2
j

:

The convexified Monge–Ampère operator (MA+) can then be represented by simply enforcing positivity of the eigenvalues,
which leads to the following,
detþðD2/Þ ¼ min
fm1 ...mdg2V

Yd

j¼1

@2/

@m2
j

 !þ
:

To discretize the operator on a finite difference grid, restrict to the set of orthogonal vectors, G, available on the given stencil.
Then the convexified Monge–Ampère operator (MA+) is approximated by
MAM½u� � min
fm1 ...mdg2G

Yd

j¼1

Dmjmj
u

� �þ
: ðMAMÞ
Theorem 3 (Convergence to Viscosity Solution). Let the PDE (MA) have a unique viscosity solution. Then the solutions of the
scheme (MAM), converge to the viscosity solution of (MA) as h; dh; d! 0.

The proof of convergence follows from verifying consistency and degenerate ellipticity and can be found in [32].

5. A hybrid discretization

In this section we propose a hybrid discretization of the Monge–Ampère equation which takes advantage of the best fea-
tures of each of the previous discretizations. We want to make use of the natural discretization (MAN) wherever possible in
order to take advantage of its simplicity and higher accuracy. However, we wish to use the monotone discretization (MAM) in
regions where the solution may be singular in order to properly capture the behaviour of the viscosity solution. In this way
we hope to achieve the second-order accuracy of the simple discretization in smooth regions and the monotonicity necessary
to capture the behaviour of the viscosity solution in non-smooth regions.

We propose the following hybrid scheme.
Discretize (MA) using a weighted average of the two discretizations:
MAH ¼ wðxÞMAN þ ð1�wðxÞÞMAM
; ðMAHÞ
where w: X ? [0,1] is a weight function defined a priori from the data as follows.
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We first identify Xs which is a neighborhood of the possible singular set of u on X, using conditions (2).
Xs ¼ fx 2 Xj� < f ðxÞ < 1=�g [ fx 2 @Xj@X flat or gðxÞ R C2;ag; ð6Þ
where � is a small parameter, which we can take equal to h, the spatial resolution.
Then define w(x) to be a differentiable function which is zero in an h-neighborhood of Xs, and which goes to 1 elsewhere.

Remark 6. The hybrid scheme will sometimes be less accurate than the standard finite differences when the solution is C2,
because it will lose some accuracy at the flat boundary. While this might seem conservative, there are examples, (see [29]),
where the flat boundary causes blow up in the Hessian, so the monotone scheme is needed.
6. Explicit and semi-implicit solution methods

Any discretization of (MA) leads to a system of nonlinear equations which must be solved in order to obtain the approx-
imate solution.

6.1. Explicit solution methods for monotone schemes

Using a monotone discretization F[u] of the Monge–Ampère operator, the simplest way to solve the Monge–Ampère
equation is by solving the parabolic version of the equation using forward Euler. That is, we perform the iteration
unþ1 ¼ un þ dtðF½un� � f Þ:
Explicit iterative methods have the advantage that they are simple to implement, but the number of iterations required suf-
fers from the well known CFL condition (which applies in a nonlinear form to monotone discretizations, as explained in [43]).
This approach is slow because for stability it requires a small time step dt, which depends on the spatial resolution h. The
time step, which can by computed explicitly, is Oðh2Þ. This was the approach used in [31].

6.2. A semi-implicit solution method

The next method we discuss is a semi-implicit method, which involves solving the Laplace equation at each iteration. In
[29] we used the identity (8) to build a semi-implicit solution method. We showed that the method is a contraction, but the
strictness of the contraction requires strict positivity of f. In practice, this meant that the iteration was fast for regular solu-
tions, but degenerated to become slower than the explicit method when f was zero in large parts of the domain.

The conditioning of the linearized Eq. (5), which affects solution time, depends on the strict convexity of the solution, see
Lemma 1. The convexity, in turn depends of strict positivity of f, see Section 2.1. This explains why solution time of the semi-
implicit solver depends on regularity.

Next, we describe a generalization of the semi-implicit method to higher-dimensions. We won’t be using the method to
solve (MA). Instead, we will use one iteration to set up the initial value for Newton’s method.

Begin with the following identity for the Laplacian in two-dimensions,
jDuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ðDuÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xx þ u2
yy þ 2uxxuyy

q
: ð7Þ
So if u solves the Monge–Ampère equation, then
jDuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xx þ u2
yy þ 2u2

xy þ 2f
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD2uj2 þ 2f

q
:

This leads to a semi-implicit scheme for solving the Monge–Ampère equation, used in [29].
Dunþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f þ jD2unj2

q
: ð8Þ
To generalize this to Rd, we can write the Laplacian in terms of the eigenvalues of the Hessian: Du ¼
Pd

i¼1ki½D2u�. Taking the
d-th power, and expanding, gives the sum of all possible products of d eigenvalues.
ðDuÞd ¼ d!
Yd

i¼1

ki þ Pðk1; . . . ; kdÞ;
where P(k) is a d-homogeneous polynomial, which we won’t need explicitly.
The result is the semi-implicit scheme
Dunþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d!f þ Pðk1½D2un�; . . . ; kd½D2un�Þ

q
: ð9Þ
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A natural initial value for the iteration is given by the solution of
Du0 ¼
ffiffiffiffiffiffiffi
d!f

p
: ð10Þ
7. Implementation of Newton’s method

To solve the discretized equation
MAH½u� ¼ f ;
we use use a damped Newton iteration
unþ1 ¼ un � avn
for some 0 < a < 1. The damping parameter a is chosen at each step to ensure that the residual kMAH(un) � fk is decreasing.
(In practice we can often take a = 1, but damping is sometimes needed.)

The corrector vn solves the linear system
ruMAH½un�
� �

vn ¼ MAH½un� � f : ð11Þ
To set up the Eq. (11), the Jacobian of the scheme is needed. Since the hybrid discretization is a weighted average of the
monotone and standard discretization, and the weight function, w(x), is determined a priori, the Jacobian of the hybrid
scheme will simply be a weighted average of the corresponding Jacobians.

The Jacobian of the Monge–Ampère operator, discretized using standard finite differences, is given by
ruMAN½u� ¼ ðDxxuÞDyy þ ðDyyuÞDxx � 2ðDxyuÞDxy; ð12Þ
which is a discrete version of the linearization of the Monge–Ampère Eq. (5).
The Jacobian for the monotone discretization is obtained by using Danskin’s Theorem [44] and the product rule.
ruMAM½u� ¼
Xd

j¼1

diag
Y
k–j

Dm�
k
m�

k
u

 !
Dm�

j
m�

j

where the m�j are the directions active in the minimum in (MAM). It is certainly possible that the active directions change from
iterate to iterate - this does not affect the convergence properties of the algorithm.

Thus the corrector is obtained by solving the weighted average of the two linearizations
ðwðxÞruMAN ½un� þ ð1�wðxÞÞruMAM½un�Þvn ¼ wðxÞMAN ½un� þ ð1�wðxÞÞMAM ½un�: ð13Þ
In order for the linear Eq. (11) to be well-posed, we require the coefficient matrix to be positive definite. As observed in Re-
mark 4, this condition can fail if the iterate un is not strictly convex.

7.1. Initialization of Newton’s method

Newton’s method requires a good initialization for the iteration. Since we need the resulting linear system to be well
posed it is essential that the initial iterate: (i) be convex, (ii) respect the boundary conditions, (iii) be close to the solution.

In order to do this, we first use one step of the semi-implicit scheme (9), to obtain a close initial value. This amounts to solving
(10) along with consistent Dirichlet boundary conditions (D). Then convexify the result, using the method of [38]. Since both the
steps can be performed on a very coarse grid, and interpolated onto the finer grid, the cost of the initialization is low.

7.2. Regularization

In degenerate examples, the PDE for vn (13) may be degenerate, which can lead to an ill-conditioned or singular Jacobian.
To get around this problem, we regularize the Jacobian to make sure the linear operator is strictly negative definite; this will
not change the fixed points of Newton’s method. We accomplish this by replacing the second directional derivatives umm with
~umm ¼ maxfumm; �g:
Here � is a small parameter. In the computations of Section 8, we take � ¼ 1
2dx2 � 10�8.

7.3. Solution of the linear system

The linear equations given by Newton’s method were solved using LU decomposition. Since the problem is sparse and
highly structured, the LU decomposition was effective for the problem sizes we considered. A possibly more efficient alter-
native would be a preconditioned inexact Newton–Krylov solver, as in [15].
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8. Computational results in two-dimensions

In this section, we summarize the results of a number of two-dimensional examples solved using the hybrid scheme de-
scribed in Section 5. In particular, we are interested in comparing the computation time for Newton’s method with the time
required by the methods proposed in [29]. We also visualize the map generated by the gradient of the solution.

These computations are performed on an N � N grid on the square [0,1]2. The monotone scheme used a 17 point stencil.
When needed as part of the initialization, the convex envelope is computed on a coarse grid using the discretization de-

scribed in [38]. Since the solution can be computed on a coarse grid, and interpolated, the added computational time is
negligible.

8.1. Failure of Newton’s method for natural finite differences

In this section, we give an example where Newton’s method breaks down when standard finite differences are used.
We chose an example which is only singular at one point, on the boundary. Nevertheless, this mild singularity is enough

for Newton’s method to break down.
Consider the solution of (MA) in [0,1]2, given by:
uðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� jxj2

q
; f ðxÞ ¼ 2ð2� jxj2Þ�2

:

The gradient of the solution is unbounded on jxj2 = 2, in particular at the point (1,1). The singularity arises from the fact that f
is unbounded there.

Due to the singularity, there is an instability in Newton’s method if the natural finite difference method is used. The iter-
ation is initialized with the exact solution. The result after performing two iterations of Newton’s method along with the
gradient map, is illustrated in Fig. 2. The correct computed solution is presented in Fig. 3(g) and (h).

8.2. Four representative examples

We have tested the hybrid method on a number of examples of varying regularity; the results are summarized in Sections
8.4, 8.3. To illustrate these results, we present more detailed results for four representative examples.

Write x0 = (.5, .5) for the center of the domain.
The first example solution, which is smooth and radial, is given by:
uðxÞ ¼ exp
jxj2

2

 !
; f ðxÞ ¼ ð1þ jxj2Þ expðjxj2Þ: ð14Þ
The second example, which is C1, is given by:
uðxÞ ¼ 1
2
ðjx� x0j � 0:2Þþ
� �2

; f ðxÞ ¼ 1� 0:2
jx� x0j

� �þ
: ð15Þ
The third example is the one which was used in Section 8.1 to demonstrate that Newton’s method for standard finite differ-
ences is unstable. The solution is twice differentiable in the interior of the domain, but has an unbounded gradient near the
boundary point (1,1). The solution is given by:
Fig. 2. Failure of Newton’s method using standard finite differences: the solution oscillates and becomes non-convex.



Fig. 3. Solutions and mappings for the (a), (b) identity map, (c), (d) C2 example, (e), (f) C1 example, and (g), (h) example with blow-up.
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uðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� jxj2

q
; f ðxÞ ¼ 2 2� jxj2

� ��2
: ð16Þ
This final example solution is the cone, which was discussed in Section 2.3. It is Lipschitz continuous.
uðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� x0j

p
; f ¼ l ¼ pdx0 : ð17Þ
In order to approximate the solution on a grid with spatial resolution h, using viscosity solutions, we approximate the mea-
sure l by its average over the ball of radius h/2, which gives:
f h ¼ 4=h2 for jx� x0j 6 h=2;
0 otherwise:

(

8.3. Visualization of solutions and gradient maps

In Fig. 3 the solutions and the gradient maps for the three representative examples are presented. For example (17) the
gradient map is too singular to illustrate. To visualize the maps, the image of a Cartesian mesh under the mapping
x1

x2

� �
!

Dx1 u

Dx2 u

� �
;

is shown, where ðDx1 u;Dx2 uÞ is the numerical gradient of the solution of the Monge–Ampère equation. The image of a circle is
plotted for visualization purposes; the equation is solved on a square. For reference, the identity mapping is also displayed.

In each case, the maps agree with the maps obtained using the gradient of the exact solution.
Table 1
Computation times for the Newton method (current work), and the Poisson and Gauss–Seidel methods (from [29]) for
four representative examples.

N Newton Iterations CPU Time (seconds)

Newton Poisson Gauss–Seidel

C2 Example (14)
31 3 0.2 0.7 2.2
45 4 0.2 1.1 4.1
63 4 0.4 1.9 15.0
89 4 1.0 4.8 57.6
127 5 2.9 9.6 236.7
181 5 9.0 23.2 1004.0
255 5 30.5 52.6 –
361 6 131.4 162.6 –

C1 Example (15)
31 4 0.4 1.1 0.8
45 6 0.4 6.1 2.8
63 7 0.8 20.5 9.5
89 9 2.0 80.0 35.9
127 11 5.7 256.8 145.5
181 13 17.7 – 558.0
255 16 55.3 – –
361 20 200.0 – –

Example with blow-up (16)
31 4 0.2 0.5 0.8
45 4 0.4 1.4 5.3
63 4 0.7 2.9 19.4
89 5 1.8 8.1 74.1
127 7 5.1 17.7 293.3
181 7 12.9 51.4 1637.1
255 7 36.1 128.2 –
361 8 152.9 374.5 –

C0,1 (Lipschitz) Example (17)
31 9 0.5 5.3 0.8
45 11 0.6 27.8 5.9
63 15 1.4 91.9 21.5
89 22 4.3 451.0 90.5
127 32 14.1 1758.2 373.9
181 30 34.6 – 1576.1
255 34 101.7 – –
361 29 280.2 – –
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8.4. Computation time

Computations were performed on a laptop with a 2 GHz Intel processor, using MATLAB running in the Windows Vista
operating system. The implementation could be made much more efficient in various ways: for example using a compiled
programming language. However the results we obtained were sufficient to demonstrate the efficiency of the method.

The computation times for the four representative examples are presented in Table 1. The computations time are com-
pared to those for the Gauss–Seidel and Poisson iterations described in [29]. The Newton solver is faster in terms of absolute
solution time in each case. Table 2 presents order of magnitude solutions times. The solution time for Newton’s method is
independent of the regularity of the solutions and faster than both of the other methods.
Table 2
Order of magnitude computation time for the different solvers in terms or the regularity of solutions. Here M = N2 is the total number of grid points.

Method Regularity of Solution

C2,a (14) C1,a (15) and (16) C0,1 (17)

Gauss–Seidel Moderate Moderate Moderate

(	 OðM1:8Þ) (	 OðM1:9Þ) (	 OðM2Þ)
Poisson Fast Fast–Slow Slow

(	 OðM1:4) (	 OðM1:4Þ–blow-up) (	 OðM2Þ–blow-up)
Newton Fast Fast Fast

(	 OðM1:3Þ) (	 OðM1:3Þ) (	 OðM1:3Þ)

Table 3
Accuracy for the standard, monotone, and hybrid discretizations for four representative examples.

N Maximum Error

Standard Monotone Hybrid

C2 Example (14)
31 7.14 � 10�5 89.09 � 10�5 24.45 � 10�5

45 3.39 � 10�5 60.50 � 10�5 15.29 � 10�5

63 1.73 � 10�5 50.88 � 10�5 9.06 � 10�5

89 0.87 � 10�5 47.51 � 10�5 5.32 � 10�5

127 0.43 � 10�5 45.53 � 10�5 3.02 � 10�5

181 0.21 � 10�5 44.65 � 10�5 1.61 � 10�5

255 0.11 � 10�5 44.22 � 10�5 0.87 � 10�5

361 0.05 � 10�5 44.00 � 10�5 0.46 � 10�5

C1 Example (15)
31 2.6 � 10�4 17.5 � 10�4 12.2 � 10�4

45 1.8 � 10�4 11.6 � 10�4 5.9 � 10�4

63 1.5 � 10�4 9.8 � 10�4 4.2 � 10�4

89 0.9 � 10�4 8.4 � 10�4 2.6 � 10�4

127 0.6 � 10�4 7.9 � 10�4 2.0 � 10�4

181 0.4 � 10�4 7.4 � 10�4 1.2 � 10�4

255 – 7.2 � 10�4 1.0 � 10�4

361 – 7.0 � 10�4 0.7 � 10�4

Example with blow-up (16)
31 17.15 � 10�3 1.74 � 10�3 1.74 � 10�3

45 14.59 � 10�3 0.98 � 10�3 0.98 � 10�3

63 12.53 � 10�3 0.59 � 10�3 0.59 � 10�3

89 10.67 � 10�3 0.37 � 10�3 0.35 � 10�3

127 9.00 � 10�3 0.35 � 10�3 0.20 � 10�3

181 7.59 � 10�3 0.34 � 10�3 0.12 � 10�3

255 6.42 � 10�3 0.33 � 10�3 0.07 � 10�3

361 5.41 � 10�3 0.33 � 10�3 0.04 � 10�3

C0,1 (Lipschitz) Example (17)
31 10 � 10�3 3 � 10�3 3 � 10�3

45 8 � 10�3 3 � 10�3 3 � 10�3

63 6 � 10�3 3 � 10�3 3 � 10�3

89 4 � 10�3 4 � 10�3 4 � 10�3

127 3 � 10�3 4 � 10�3 4 � 10�3

181 2 � 10�3 4 � 10�3 4 � 10�3

255 – 4 � 10�3 4 � 10�3

361 – 4 � 10�3 4 � 10�3



Fig. 4. Surface plots of error using the hybrid scheme for the (a) C1 example and (b) cone example.
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8.5. Accuracy

Numerical errors are presented in Table 3. We compare the accuracy of the hybrid scheme to the standard finite differ-
ence discretization, (using the results of [29]) and to the monotone scheme which was also solved using Newton’s method.

We discuss each example in turn.

The C2 solution (14)
The standard finite difference schemes givesOðh2Þ accuracy (see [29]). In this case, the hybrid scheme is slightly less accu-

rate, because the monotone scheme is used near the boundary. On a strictly convex domain the hybrid scheme would reduce
to the standard discretization and achieve the same accuracy.

The effect diminishes as the number of grid points increases so that the number of interior points using the higher order
scheme dominates. Accuracy approaches Oðh2Þ as the number of grid points increases. This is a definite improvement over
the monotone scheme, which has its accuracy limited by the stencil width.

The C1 solution (15)
The accuracy isOðhÞ, which is similar to the standard discretization and better than the limited accuracy permitted by the

monotone discretization with a fixed stencil width. We also look at the error at each point (see Fig. 4); it is evident that the
singularity around the circle is the factor that most affects the accuracy. Because of this non-smoothness, there is no reason
to expect our scheme to produce the Oðh2Þ accuracy that is possible on C2 solutions.

The blow-up solution (16)
In this case, the hybrid scheme accuracy is Oðh1:5Þ. This is better than the accuracy of both the standard discretization,

which was Oðh0:5Þ [29], and the monotone scheme, which is limited by the stencil width.
Table 4
Maximum error and computation time for the hybrid Newton’s method on three representative examples in the
three-dimensional case.

N Max Error Iterations CPU Time (s)

C2 Example (18)
7 0.0151 2 0.04
11 0.0140 3 0.10
15 0.0129 5 0.71
21 0.0121 6 6.72
31 0.0111 5 86.63

C1 Example (19)
7 0.0034 1 0.02
11 0.0022 1 0.09
15 0.0016 1 0.22
21 0.0009 1 1.03
31 0.0005 1 17.12

Example with blow-up (20)
7 9.6 � 10�3 1 0.03
11 5.2 � 10�3 3 0.11
15 4.6 � 10�3 3 0.48
21 4.0 � 10�3 6 7.42
31 2.9 � 10�3 8 138.74
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The cone solution (17)
For this singular example, the hybrid scheme is identical to the monotone scheme (since the right-hand side is either 0 or

very large everywhere in the domain). Consequently, the angular resolution (stencil width) limits the accuracy of solutions.
We observed that the 17 point stencil reduced the error by an order of magnitude compared to the 9 point stencil. This
dependence on the stencil width is also evident in the surface plot of error (Fig. 4), which demonstrates that error is largest
along directions that are not captured by the stencil. Since this solution is so singular, the reduced accuracy is to be expected.
9. Computational results in three-dimensions

In this section, we demonstrate the speed and accuracy of the hybrid Newton’s method for three-dimensional problems.
These computations are performed on an N � N � N grid on the square [0,1]3. The monotone scheme used a 19 point stencil.
The size of the computation was restricted by the available memory, not by solution time.

The solution methods of [29] were restricted to the two-dimensional Monge–Ampère equation, so we are no longer able
to compare solution times to Newton’s method for these examples.

As before, we provide specific results for three representative examples of varying regularity. In this section we use the
notation
x ¼ ðx; y; zÞ
and let x0 = (.5, .5, .5) be the centre of the domain.
The first example is the C2 solution given by:
uðxÞ ¼ exp
jxj2

2

 !
; f ðxÞ ¼ ð1þ jxj2Þ exp

3
2
jxj2

� �
: ð18Þ
The second example is the C1 solution given by:
uðxÞ ¼ 1
2
ðjx� x0j � 0:2Þþ
� �2

; ð19Þ

f ðxÞ ¼
1� 0:4

jx�x0 j
þ 0:04
jx�x0 j2

; x� x0j j > 0:2;

0; otherwise:

(

The third example is the surface of a ball, which is differentiable in the interior of the domain, but has an unbounded gradient
at the boundary.
uðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� jxj2

q
; f ðxÞ ¼ 3ð3� jxj2Þ�5=2: ð20Þ
Solution times for the hybrid Newton’s method in three-dimensions are presented in Table 4. (The fact that the solver re-
quired only one iteration for Example (19) was simply an artifact – for larger problems sizes more iterations were required.
10. Conclusions

The purpose of this work was to build a fast, accurate finite difference solver for the elliptic Monge–Ampère equation.
A hybrid finite difference discretization was used which selects between an accurate standard finite difference discreti-

zation and a stable (provably convergent) monotone discretization. The choice of discretization was based on known regu-
larity results which depended on the boundary data, g, the right hand side function f, and strict convexity of the domain.
Wherever the requirements on the data are not met, the hybrid discretization chooses the monotone discretization.

We have resolved the problem of ill-conditioning near singular solutions faced by existing solution methods. Given a right
hand side function f which is zero or very large, the linearized system becomes degenerate. Existing methods exhibit an in-
crease in solution times by a factor of 30 going from the smooth to even the moderately singular case.

By carefully choosing a convergent discretization, we produced linear problems for Newton’s method which are better
conditioned. In fact, the monotone (or hybrid) discretization was shown to be necessary for stability of Newton’s method:
an example with a mildly singular solution showed that the standard discretization leads to instabilities. In our case, the dis-
cretized equations were solved by Newton’s method, which is fast, OðM1:3Þ, where M is the number of data points, (or half a
minute on a 2562 grid), independent of the regularity of the solution. We also computed the completely degenerate example
(where f is an approximation of a delta function), which has not been computed by other methods. In this case, our solution
times increased by a factor of less than three.

Compared to our two previous methods, the implementation of Newton’s method was significantly (orders of magnitude)
faster.

The hybrid discretization was introduced to improve the accuracy of the monotone discretization on regular solutions.
This expected improvement was achieved. On regular solutions the hybrid solver was (asymptotically) as accurate as the
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standard finite difference discretization. For one moderately singular example the hybrid solver was more accurate than
standard finite differences by OðhÞ.

The discretization and solution method used was not restricted to two-dimensions. This allowed for the solution of three-
dimensional problems on moderate (323) sized grids.

In summary, the solver presented used a novel discretization in general-dimensions, accompanied by a fast solution
method. The resulting solver is a significant improvement over existing methods for the solution of possibly singular solu-
tions of the elliptic Monge–Ampère equation, in terms of solution time, stability, and accuracy.
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