期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:262
Rapidly convergent two-dimensional quasi-periodic Green function throughout the spectrum-including Wood anomalies
Article
Bruno, Oscar P.1  Delourme, Berangere2 
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Paris 13, Sorbonne Paris Cite, LAGA, CNRS UMR 7539, F-93430 Villetaneuse, France
关键词: Wood anomaly;    Quasi-periodic Green function;    Rough-surface scattering;    Diffraction grating;    Ewald summation method;    Scattering by periodic surfaces;    Lattice sums;    Time-harmonic Helmholtz equation;    Time-harmonic Maxwell equations;    Integral equation methods;    Boundary integral methods;   
DOI  :  10.1016/j.jcp.2013.12.047
来源: Elsevier
PDF
【 摘 要 】

We introduce a new methodology, based on new quasi-periodic Green functions which converge rapidly even at and around Wood-anomaly configurations, for the numerical solution of problems of scattering by periodic rough surfaces in two-dimensional space. As is well known the classical quasi-periodic Green function ceases to exist at Wood anomalies. The approach introduced in this text produces fast Green function convergence throughout the spectrum on the basis of a certain finite-differencing approach and smooth windowing of the classical Green function lattice sum. The resulting Green-function convergence is super-algebraically fast away from Wood anomalies, and it reduces to an arbitrarily-high (user-prescribed) algebraic order of convergence at Wood anomalies. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2013_12_047.pdf 760KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次