
Journal of Computational Physics 262 (2014) 262–290
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Rapidly convergent two-dimensional quasi-periodic Green
function throughout the spectrum—including Wood anomalies

Oscar P. Bruno a,∗, Bérangère Delourme b

a Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125, USA
b Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), 99 Av. J-B Clément, F-93430 Villetaneuse, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 October 2013
Received in revised form 20 December 2013
Accepted 23 December 2013
Available online 9 January 2014

Keywords:
Wood anomaly
Quasi-periodic Green function
Rough-surface scattering
Diffraction grating
Ewald summation method
Scattering by periodic surfaces
Lattice sums
Time-harmonic Helmholtz equation
Time-harmonic Maxwell equations
Integral equation methods
Boundary integral methods

We introduce a new methodology, based on new quasi-periodic Green functions which
converge rapidly even at and around Wood-anomaly configurations, for the numerical
solution of problems of scattering by periodic rough surfaces in two-dimensional space.
As is well known the classical quasi-periodic Green function ceases to exist at Wood
anomalies. The approach introduced in this text produces fast Green function convergence
throughout the spectrum on the basis of a certain “finite-differencing” approach and
smooth windowing of the classical Green function lattice sum. The resulting Green-function
convergence is super-algebraically fast away from Wood anomalies, and it reduces to an
arbitrarily-high (user-prescribed) algebraic order of convergence at Wood anomalies.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of evaluation of the fields scattered by a periodic perfectly conducting surface under plane-
wave illumination. This problem has been extensively studied as it impacts upon a wide range of areas of science and
engineering, including optics, photonics, communications, and stealth, and, through them, many fields of physics, astron-
omy, chemistry, biology and metallurgy [30,44]. A variety of numerical approaches have been used to tackle this important
problem [10,30,38,42] including, notably, methods based on use of integral equations [33]. Recent integral equation meth-
ods [6,7], in particular, have made it possible to obtain, in reasonable computing times, highly accurate solutions for very
challenging problems of scattering by periodic surfaces. The success of this methodology lies in part on its inherent di-
mensionality reduction (only the scattering surface needs to be discretized, not the surrounding volume) and associated
automatic enforcement of radiation conditions; mathematical analyses of the integral equation method in various contexts,
including scattering by periodic surfaces and bounded obstacles, can be found in [1,9,15,17,23,33,42] and references therein.

The properties of integral equations for periodic surfaces under plane-wave incidence are closely related to the
character of the corresponding quasi-periodic Green functions used. As is well known, classical expressions for quasi-
periodic Green functions converge extremely slowly, and a number of methods have therefore been introduced to produce
rapidly convergent Green-function algorithms, including the well known Ewald summation method [2,12,27] for two- and
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three-dimensional problems and, for the two-dimensional case, the highly efficient algorithm [45]. Many other contribu-
tions have in fact been put forward over the years to facilitate evaluation of quasi-periodic Green functions; in addition to
those mentioned above here we mention [13,18,24,32,36,39,40]; a recent survey can be found in [29]. A combined approach
which takes advantage of various methods, applying each algorithm for configurations for which it is most efficient (for the
challenging three-dimensional Green function problem), was put forth in [20].

As is well known, none of these methods for evaluation of the quasi-periodic Green function can be applied to problems
of scattering by periodic surfaces at Wood-anomaly configurations [43,46] (at which one or more scattered waves propagate
in a direction parallel to the scattering surface): for Wood-anomaly configurations the classical periodic Green function is
not even defined (see Remark 2.2 for details on nomenclature concerning Wood anomalies). To address this difficulty we
propose new quasi-periodic Green functions and associated series representation which converge rapidly even at and around
Wood anomalies. More precisely, we present a set of rapidly convergent quasi-periodic Green functions Gq

j whose N-term

truncated series converge, at Wood anomalies, at least as fast as (1/N)(j−1)/2 for j even (resp. (1/N)j/2 for j odd) as N → ∞;
in view of the fact that this approach also incorporates the smooth windowing function methodology [35], the new Green
functions also enjoy super-algebraically fast convergence (faster than any power of N) away from Wood anomalies.

The approach introduced in this text produces fast Green-function convergence at and around Wood anomalies on the
basis of a certain order-j “finite-differencing” method (for positive integer values of j). To our knowledge, this is the first
approach ever presented that is applicable to problems of scattering by diffraction gratings at Wood anomalies on the basis
of quasi-periodic Green functions.

It should be noted that a “method-of-images Green-function”, which is related to our j = 1 Green function approach, was
used in [14,47] to treat problems of scattering by nonlocal, non-periodic perturbations of a line in two dimensions. The j = 1
method, which suffices to yield (slow) convergence in the two-dimensional case, does not give rise to convergence in three
dimensions: for three-dimensional configurations convergence only results for j � 2 [11]. In this context we also mention
the recent work [3,4] which, for two-dimensional problems, introduces an alternative integral equation which does not
utilize a quasi-periodic Green function, and which is also applicable at Wood anomalies: in that approach quasi-periodicity
is enforced through use of auxiliary layer potentials on the periodic cell boundaries. The practical feasibility of an extension
of this methodology to three-dimensional problems has not as yet been established.

In order to demonstrate the character of the new approach we present efficient numerical methods, based on the new
Green functions, for the solution of quasi-periodic scattering problems throughout the spectrum—even at and around Wood
anomalies—; as shown in Section 4.4, certain slight modifications of the direct finite-differencing Green function expres-
sions mentioned above need to be introduced to obtain uniquely solvable integral-equation problems. We further mention
that, as indicated in [11], additional acceleration can be induced in the Green-function convergence by means of the FFT-
based equivalent-source methodology [8]; see Remark 6.2. Our numerical results demonstrate the capabilities of the new
methodology: even in absence of the acceleration method [8,11], the present approach can solve the complete scattering
problem for rather challenging periodic surfaces (steep gratings) in the resonance regime, including Green function compu-
tations and matrix inversion by means of Gaussian elimination, in total computing times of a few tens to a few hundreds
of milliseconds—depending on the complexity of the problem.

The remainder of this paper is organized as follows. Section 2 describes the scattering problem under consideration and
it presents some background on quasi-periodic function and integral equations. Section 3 describes the smooth windowing
method that gives rise to super-algebraically converging Green function away from Wood anomalies. Section 4 then presents
the new rapidly convergent Green functions together with necessary theoretical discussions involving the Green function
itself and associated integral equations. Section 5 describes the numerical implementation of the new Green functions and
integral equations, and Section 6, finally, presents a variety of numerical results demonstrating the properties of the overall
proposed approach.

2. Preliminaries

2.1. Scattering problem

We consider the problem of scattering of a plane wave by a perfectly reflecting periodic surface

Γ = {(
x, f (x)

)
, x ∈R

}
(1)

with f ∈ Cr
per(R), r � 2, where, for any non-negative integer r, Cr

per(R) denotes the set of L-periodic r-times continuously
differentiable functions defined in the real line. The propagation domain is thus the region

Ω = {
(x, y) ∈ R

2, such that y > f (x)
}
. (2)

Letting k be a positive wavenumber and, further, letting θ ∈ (−π/2,π/2), α = k sin(θ) and β = k cos(θ), we assume the
periodic surface is illuminated by the incident plane wave

uinc(x, y) = ei(αx−β y) (3)
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so that θ is the angle of propagation of the incident field measured counterclockwise from the negative y-axis. The scattered
field us ∈ H1

loc(Ω) is a quasi-periodic solution of the homogeneous Helmholtz equation that satisfies a radiation condition
at infinity. More precisely, us satisfies the Partial Differential Equation (PDE)

�us + k2us = 0 in Ω (4)

as well as the quasi-periodicity condition

us(x + L, y) = us(x, y)eiαL (5)

together with either the Dirichlet boundary conditions

us = −uinc on Γ (6)

or the Neumann boundary conditions

∂us

∂ν
= −∂uinc

∂ν
on Γ. (7)

Here ν is the unit normal

ν(x) = (− f ′(x),1)√
1 + f ′(x)2

. (8)

The aforementioned condition of radiation at infinity results from consideration of the Rayleigh expansion [42]

us(x, y) =
∑
n∈N

anei(αnx+βn y) + bnei(αnx−βn y), y > H = max
x∈R

f (x), (9)

for the solution us . Here

αn = α + n
2π

L
, βn =

{√
k2 − α2

n if α2
n � k2,

i
√

α2
n − k2 otherwise.

(10)

We say that us satisfies the condition of radiation at infinity (or that us is outgoing) if bn = 0 for all n ∈ Z. In other words, us is
outgoing if and only if us is given by a Rayleigh expansion of the form

us(x, y) =
∑
n∈N

anei(αnx+βn y), y > H, (11)

see e.g. [42].

Remark 2.1. In what follows we denote by U the (finite) set of integers for which α2
n < k2. For n ∈ U the function ei(αnx+βn y)

is a propagative (outgoing) plane wave. In the case α2
n > k2, in contrast, the corresponding functions ei(αnx+βn y) are evanes-

cent: they decrease exponentially as y → ∞. In the limiting case α2
n = k2 we have a Wood anomaly frequency (cf. Remark 2.2

below). In this case the function eiαnx+iβn y = eiαnx is a grazing plane wave, that is, it is a plane wave that propagates parallel
to the grating. For given period L and angle θ we denote by K L,θ = {k: k = |αn|} the corresponding set of Wood frequencies.
(We also write K instead of K L,θ when specification of the period and incidence angle is either not crucial or is otherwise
clear from the context.)

Remark 2.2. With reference to Remark 2.1, it is clear that continuous variations of one or more of the quantities k, L
and θ can cause the n-th diffracted mode eiαnx+iβn y to change from evanescent (βn imaginary) to propagative (βn real) or
viceversa, passing by a wave with βn = 0 (k ∈ K L,θ ) at some “pass-off” intermediate configuration. Rayleigh [43] connected
such pass-off k ∈ K L,θ configurations, which are characterized by energy redistribution as cut-off of diffraction orders change,
with previous experimental observations by Wood [46] of anomalous diffraction behavior. Eventually it was noticed that
Rayleigh’s pass-off configurations account for some but not all of Wood’s observations of anomalous diffraction; see [30,
p. 285] or, for a detailed discussion, [34]. It might therefore be appropriate to call pass-off configuration “Rayleigh–Wood
configurations”. For the sake of brevity, and in keeping with much of the existing literature, however, throughout this paper
a configuration for which k ∈ K L,θ will be called a Wood configuration, and k will be called a Wood frequency, or a Wood
anomaly frequency.

Remark 2.3. With reference to Remarks 2.1 and 2.2 we note that for a Wood frequency the Neumann problem for a flat
interface ( f = 0) is not uniquely solvable: for that case the Rayleigh mode eiαnx is a non-zero solution with zero Neumann
boundary data.
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For each n ∈ U we define the associated efficiency

en = |an|2 βn

β
.

The (finite) set of all efficiencies satisfies the energy balance relation [42]∑
n∈U

en = 1. (12)

Remark 2.4. As is known [5,21,22,37,42], the Dirichlet problem (4)–(6) admits a unique outgoing solution us ∈ H1
loc(Ω)

even at Wood anomalies (cf. Remark 2.3). A uniqueness result is not available under the Neumann boundary conditions (7),
although it is known that the Neumann problem (4), (5), (7), (11) does admit a unique solution except possibly for a
discrete set of frequencies k that can only accumulate at infinity. We note, however, that numerical evidence suggests that
uniqueness (and thus existence) of solution for this problem does hold at least for all k /∈ K (cf. [22, p. 147]).

2.2. Classical quasi-periodic Green function

Let k /∈ K (k is not a Wood anomaly) and let (X, Y ) ∈R
2. The quasi-periodic Green function Gq is defined by

Gq(X, Y ) =
∑
n∈Z

e−iαnL G(X + nL, Y ), (13)

where, denoting by H (1)
0 the first Hankel function of order zero, G is the two-dimensional free space Green function

G(X, Y ) = i

4
H (1)

0

(
k
√

X2 + Y 2
)
. (14)

As is known, the series (13) converges for (X, Y ) �= (rL,0), r ∈ Z. Further, the truncated series

Gq(X, Y ) =
∑

n∈Z, |n|�2

e−iαnL G(X + nL, Y )

converges uniformly in any compact set not containing singularities of Gq (see e.g. Theorem 4.1 in [9]). For reference, finally,
we note that the Green function also admits the Rayleigh expansion

Gq(X, Y ) =
∑
n∈Z

i

2L

eiαn X+iβn|Y |

βn
(15)

(see e.g. Theorem 4.4 in [9]).

2.3. Integral equation formulations

Here and in what follows we denote by Ω# and Γ# the intersection of Ω and Γ , respectively, with the set x ∈ (− L
2 , L

2 )×
R:

Ω# =
{
(x, y) ∈

(
− L

2
,

L

2

)
×R, such that y > f (x)

}
, Γ# =

{(
x, f (x)

)
, x ∈

(
− L

2
,

L

2

)}
. (16)

As is well known, the Dirichlet and Neumann scattering problems described in Section 2.1 can be reduced to second kind
integral equations over the curve Γ# (cf. for instance [21,42]). Indeed, a variety of such integral formulations exist. For
definiteness, in what follows we present two types of integral equations, one for each one of the problems presented in
Section 2.1, which we will consider throughout this text.

In the Dirichlet case the scattered field can be expressed in the form

us
D(x, y) =

∫
Γ#

∂ν(x′)Gq(x − x′, y − f
(
x′))μ(

x′)ds
(
x′),

where the density μ is the solution of the integral equation

−uinc|Γ# =
∫
Γ#

∂ν(x′)Gq(x − x′, f (x) − f
(
x′))μ(

x′)ds
(
x′) + 1

2
μ

(
x′).

For the Neumann problem, in turn, the scattered field is given by the expression



266 O.P. Bruno, B. Delourme / Journal of Computational Physics 262 (2014) 262–290
Fig. 1. Windowing function S = S(x, x0, x1) for x0 = 1 and x1 = 2.

us
N (x, y) =

∫
Γ#

Gq(x − x′, y − f
(
x′))η(

x′)ds
(
x′),

where η is the solution of the integral equation

−∂ν(x)u
inc|Γ# =

∫
Γ#

∂ν(x)Gq(x − x′, f (x) − f
(
x′))η(

x′)ds
(
x′) − 1

2
η
(
x′).

3. Super-algebraically convergent representation away from Wood anomalies

In this section we present a novel methodology, put forth recently [35], for evaluation of the quasi-periodic Green
function away from Wood anomalies. In fact, in view of its qualities at non-Wood anomaly frequencies and for ease of im-
plementation of high-order integral Nyström solvers, the basic element in this method (smooth windowing) is incorporated
as part of our all-frequency scheme—valid for both Wood and non-Wood frequencies—which we introduce in Sections 4
and 5. As established in [35] (Theorem 3.1 below) and as demonstrated by means of a simple example below in this sec-
tion, integrals of products of smoothly windowed Green functions and quasi-periodic functions converge exponentially fast
to the corresponding integrals involving the exact periodic Green function. Using an argument based on summation by
parts (instead of the integration by parts calculation utilized below in this section) it can be shown that a corresponding
convergence result holds for the windowed periodic Green function itself.

To proceed with our smooth-windowing Green-function algorithm we consider the smooth cut-off function

S(x, x0, x1) =

⎧⎪⎨
⎪⎩

1 if |x| � x0,

exp
( 2e−1/u

u−1

)
if x0 < |x| < x1, u = |x|−x0

x1−x0
,

0 if |x| � x1

(17)

(see Fig. 1), and we define the approximate periodic Green function Gq
A by

Gq
A(X, Y ) = i

4

∑
n∈Z

e−iαnL H (1)
0

(
k
√

(X + nL)2 + (Y )2
)

S(X + nL, c A, A) (18)

and a corresponding approximation of its normal derivative

Hq
A

(
x, x′) = i

4

∑
n∈Z

e−iαnL∂ν(x′)H (1)
0

(
k
√(

x − x′ + nL
)2 + (

y − y′)2)
S
(
x − x′ + nL, c A, A

)
, (19)

where A > L and 0 < c < 1. Then, as established in [35] the following result holds:

Theorem 3.1. Let k /∈ K and let f be a smooth function. Then, for any α-quasi-periodic smooth function μ the integrals∫
Γ#

Hq
A

(
x, x′)μ(

x′)ds
(
x′) and

∫
Γ#

Gq
A

(
x − x′, f (x) − f

(
x′))μ(

x′)ds
(
x′)

converge super-algebraically fast (that is, faster than any power to 1/A) to∫
Γ#

∂ν(x′)Gq(x − x′, f (x) − f
(
x′))μ(

x′)ds
(
x′) and

∫
Γ#

Gq(x − x′, f (x) − f
(
x′))μ(

x′)ds
(
x′),

respectively, as A tends to infinity.
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The main idea of the proof of this result can be conveyed by a simplified example that results as the Hankel function
is substituted by its large-argument asymptotic expression (cf. reference [35] which also contains a complete proof of
Theorem 3.1). For definiteness we consider the case of double-layer potential; the case of the single layer is even more direct.
To construct our simplified example note that, since μ is α-quasi-periodic, the double layer potential can be expressed in
the form

∫
Γ#

∂ν(x′)Gq(x − x′, f (x) − f
(
x′))μ(

x′)ds
(
x′) =

∞∫
−∞

∂ν(x′)G
(
x − x′, f (x) − f

(
x′))μ(

x′)√1 + f ′(x′)2
dx′. (20)

Taking into account the large z asymptotic expression H (1)
1 (z) ∼ C eiz√

z
, for large positive values of x′ we obtain

∂ν(x′)G
(
x − x′, f (x) − f

(
x′)) = C

(
x, x′)eikx′

√
x′ , (21)

where C is a function which remains bounded from zero and ∞ as x − x′ → ∞. On the other hand μ(x′)
√

1 + f ′(x′)2 is
an α-quasi-periodic function, and it can therefore be expanded in a Rayleigh series of the form

∑∞
n=−∞ aneiαnx′

. In our
simplified example we thus replace the Green function by the asymptotic form (21) with C(x, x′) = 1, so that the integrand

equals an infinite sum of constant multiples of terms of the form eikn x√
x

(where kn = k − α − 2πn
L ). And, in fact, for our

example we consider just one such term, that is, we study the integration problem

Iex =
+∞∫
0

eiknx′
√

x′ dx′.

As stated above, throughout this section we assume k is not a Wood anomaly frequency (k /∈ K ), or, in other words, kn �= 0
for all n.

To illustrate Theorem 3.1 in the present context we investigate theoretically and numerically the convergence of the
approximation

I S,A =
+∞∫
0

S
(
x′, c A, A

)eiknx′
√

x′ dx′

to the exact value Iex. For comparison purposes we also consider the classical approximation

I H,A =
A∫

0

eiknx′
√

x′ dx′, (22)

which can be viewed as the result of substituting the smooth windowing function S by a suitable Heaviside function H ,
and which corresponds, in the context of this section, to the direct truncation of the series (13) keeping a number of the
order of O(A/L) terms. The error Iex − I S,A in the windowed approximation is given by

Iex − I S,A =
+∞∫
0

(
1 − S

(
x′, c A, A

))eiknx′
√

x′ dx′ =
+∞∫

c A

P
(
x′, c A, A

)eiknx′
√

x′ dx′,

where P (x′, c, A) = 1 − S(x′, c A, A). Using the change of variables x = x′
ca we obtain

Iex − I S,A = √
c A

+∞∫
1

P (x,1, 1
c )√

x
eiknc Ax dx.

Given that P (1,1, 1
c ) = 0, integration by parts yields

Iex − I S,A = − 1

ikn
√

c A

+∞∫
1

∂

∂x

(
P (x,1, 1

c )√
x

)
eiknc Ax dx,

while, more generally, p-times iterated integration by parts gives rise to the relation
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Table 1
Approximation errors for various values of A (kn = 2πc = 0.1).

A |Iex − I H,A | |Iex − I S,A |
10 5.0 × 10−2 8.5 × 10−5

20 3.6 × 10−2 9.7 × 10−7

25 3.2 × 10−2 1.9 × 10−7

50 2.3 × 10−2 4.9 × 10−10

75 1.8 × 10−2 4.7 × 10−11

100 1.6 × 10−2 7.7 × 10−14

Iex − I S,A = (−1)p

(ikn)p(c A)p−1/2

+∞∫
1

∂ p

∂xp

(
P (x,1, 1

c )√
x

)
eiknc Ax dx.

Noting that the derivatives of
P (x,1, 1

c )√
x

do not depend on A, and that they are bounded functions with support equal to the

interval [1,1/c], for all p ∈ N we obtain

|Iex − I S,A | � C√
kn(knc A)p−1/2

.

In other words, the error in the windowed approximation I S,A is super-algebraically small: it is a quantity of order A−p for
all p � 1.

The widowed integration method thus results in much closer approximations than the direct un-windowed approxi-
mation I H,A : a simple argument involving a single integration by parts shows that the error in the latter approximation

only decays like A− 1
2 . Table 1 illustrates the super-algebraically fast convergence of I S,A as well as the extremely slow

convergence of I H,A .

4. Rapidly convergent quasi-periodic series at and around Wood anomalies

4.1. New quasi-periodic Green function: introduction

With reference to Eq. (13), we seek a quasi-periodic Green function G̃q
j that can be expressed by a rapidly-convergent

series

G̃q
j (X, Y ) =

∞∑
n=−∞

e−iαnL G j(X + nL, Y ), (23)

(j ∈ N), where G j(X, Y ) is a j-dependent half space Green function, defined in Section 4.2, which decays rapidly as X tends
to infinity. (The super-index q on the left-hand side of Eq. (23) denotes quasi-periodicity, and the tilde accent is used there
to differentiate the Green function (23) with a related but different version of it which is introduced in Section 4.4; see also
Remark 4.1.) Because of this fast decay, a truncated sum of the form

G̃ N,q
j (X, Y ) =

∑
|n|�N−1

e−iαnL G j(X + nL, Y ) (24)

converges more rapidly than does a corresponding truncation of the classical quasi-periodic Green function (13): as shown
in Section 4.3 below, there exists a constant CM > 0 such that for all Y ∈ (−M, M) and for all X ∈ (−L, L)2 we have

∣∣G̃q
j (X, Y ) − G̃ N,q

j (X, Y )
∣∣ �

⎧⎪⎨
⎪⎩

CM

N
j−1

2

for j even,

CM

N
j
2

for j odd.

In particular, the series expansion (23) for the new Green function converges for all frequencies k, even at and around Wood
anomaly frequencies.

Remark 4.1. Our proposed quasi-periodic Green-function, which is denoted by Gq
j , results from a slight but important mod-

ification of G̃q
j that is necessary to induce uniqueness in associated integral equation formulations; see Section 4.4 for

details.
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4.2. Rapidly decaying (non-quasi-periodic) half-space Green function G j

Rapidly decaying half-space Green functions G j can be constructed on the basis of linear combinations of the regular
free-space Green functions with arguments shifted by a number j of shifts. For example, letting j = 1 and

G1(X, Y ) = H (1)
0

(
k
√

X2 + Y 2
) − H (1)

0

(
k
√

X2 + (Y + h)2
)

(25)

in view of the mean value theorem we have

G1(X, Y ) = hk(Y + ξ)√
X2 + (Y + ξ)2

H (1)
1

(
k
√

X2 + (Y + ξ)2
)

(26)

for some real value of ξ , Y < ξ < Y + h. But in view of the asymptotic formula

H (1)
n (t) =

√
2

πt
ei(t−n π

2 − π
4 )

{
1 + O

(
1

t

)}
, t ∈R, n ∈N0, (27)

there exists a constant C > 0 such that, for large |X | we have

∣∣G1(X, Y )
∣∣ � C

|X |3/2
. (28)

In particular, the function G1, which is a Green function in the domain Y > −h, decays faster, as X → ∞, than the free
space Green function (14).

Green functions with arbitrarily fast algebraic decay can be obtained by a suitable generalization of these ideas—using,
for a given positive integer j, a finite-difference operator that approximates a Y -derivative operator of order j. In this paper
we use the finite-difference operator F j : Cj+1 →C given by

F j(u0, . . . , uj) =
j∑


=0

(−1)
C j

u
, (29)

where C j

 = j!


!(j−
)! are the binomial coefficients. Denoting by I j : Cj+1 → C
j+1, E j : Cj+1 → C

j+1 and P j : Cj+1 → C the
identity operator, the left-shift operator, and the first coordinate projection operator, respectively,

I j(u0, u1, . . . , uj) = (u0, u1, . . . , uj),

E j(u0, u1, . . . , uj) = (u1, . . . , uj,0),

P j(u0, u1, . . . , uj) = u0, (30)

as a result of a binomial expansion we obtain

F j = P j ◦ (
I j − E j)j

.

We thus see that F j results from j applications of the first-order difference operator (I j − E j).

Remark 4.2. Since for each polynomial P = P (Z) of degree k we have that Q (Z) = P (Z + 
δ) − P (Z + (
 − 1)δ) is a
polynomial of degree (k − 1), it follows that, as is known, the operator (29) produces exactly the j-th order derivatives of
polynomials of degree strictly smaller than j: for all polynomials of the form P (Z) = ∑j−1


=0 a
 Z
 we have

j∑

=0

(−1)
C j

 P (Z + δ
) = 0, (31)

see e.g. [19, Eq. (5.42)].

Using a Taylor expansion of order j − 1 and including the j-th order remainder, it follows from Remark 4.2 that for a
sufficiently smooth function v we have

j∑

=0

(−1)
C j

v(Z + δ
) = δj

j∑

=1

(−1)
 C j




j

j! v(j)(Z + ξ
), 0 � ξ
 � δ
. (32)

For given h > 0 and j ∈ N we thus define the j-th rapidly-decaying half-space Green function by
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G j(X, Y ) = i

4

j∑

=0

(−1)
C j

H (1)

0

(
k
√

X2 + (Y + 
h)2
)

(33)

for (X, Y ) ∈ R
2, (X, Y ) �= (0, 
h), and for all non-negative integers 
 � j. With this selection for the function G j , the corre-

sponding quasi-periodic Green function (23) is given by

G̃q
j (X, Y ) = i

4

∞∑
n=−∞

e−iαnL
j∑


=0

(−1)
C j

H (1)

0

(
k
√

(X + nL)2 + (Y + 
h)2
)
. (34)

In view of the Rayleigh expansion (15) together with Eqs. (13) and (34), further, it is easy to check that for Y � 0 G̃q
j can

also be expressed in the form

G̃q
j (X, Y ) =

∑
n∈Z

i

2Lβn

( j∑

=0

(−1)
C j

eiβn
h

)
eiαn X eiβn Y (35)

which plays a crucial role in the null-space study presented in Section 4.4.
As shown in Lemma 4.3 below, the Green function G j and its derivatives do indeed decay rapidly; the corresponding fast

convergence of the left-hand series expression in Eq. (23) is established in Section 4.3.

Lemma 4.3. Let j ∈ N, h > 0, 
 = 0 or 
 = 1, m = 1 or m = 2 and k > 0 be given. Then, for each M > 0 there exists a positive constant
CM (that also depends on j, k and h) such that for all Y ∈ (−M, M) and for all real numbers X with |X | > 1 we have

∣∣∂

mG j(X, Y )

∣∣ �

⎧⎪⎨
⎪⎩

CM

|X | j+1
2

if j even,

CM

|X | j
2 +1

if j odd,
(36)

where ∂

m denotes differentiation of order 
 in the m-th coordinate direction, that is, for 
 = 0 ∂


mG j = G j , and for 
 = 1 and m = 1
(resp. 
 = 1 and m = 2), ∂


mG j denotes the first derivative of G j in the direction X (resp. in the direction Y ).

Proof. We consider the case 
 = 0 (∂

mG j = G j) first. Let

f (X, Z) = i

4
H (1)

0

(
k|X |u(Z)

)
, u(Z) =

√
1 + Z 2. (37)

Since, as it is easily seen, we have

G j(X, Y ) =
j∑


=0

C j

(−1)
 f

(
X,

Y

|X | + 
h

|X |
)

,

to study the decay rate of G j(X, Y ) as X → ∞ we may apply the relation (32) to the function v(Z) = f (X, Z), for a fixed
value of X , and with Z = Y

X and δ = h
|X | . We thus obtain

G j(X, Y ) =
(

h

|X |
)j j∑


=1

(−1)
C j




j

j! f [j]
(

X,
Y

|X | + ξ


)
, 0 � ξ
 � 
h

|X | , (38)

where f [j] denotes the Z -derivative of the composite function (37):

f [j](X, Z) = i

4

dj

dZ j

(
H (1)

0

(
k|X |u(Z)

))
. (39)

The j-th derivative (39) can be obtained by means of an application of Faà di Bruno’s formula [16] for differentiation of
composite functions, which in the present context gives

f [j](X, Z) = i

4

∑ j!
m1! . . .mj!

(
H (1)

0

)(m)(
k|X |u(Z)

) j∏
q=1

(
k|X |u(q)(Z)

q!
)mq

, (40)

where m = m1 + · · · + mj , and where the sum is evaluated over all j-tuples of non-negative integers (m1,m2, . . . ,mj) satis-
fying m1 + 2 · m2 + · · · + j · mj = j.

In view of Eqs. (38) and (40), to estimate the asymptotics of G j(X, Y ) as X → ∞ it suffices to estimate the corresponding
asymptotics for the following two families of quantities:
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(a) (H (1)
0 )(m)(k|X |u( Y

|X | + ξ
)), (1 � 
,m � j), and

(b)
∏j

q=1(k|X |u(q)( Y
|X | + ξ
))

mq , (1 � 
 � j),
∑j

q=1 qmq = j.

It is easy to estimate the quantities (a). Indeed, in view of the well known expression [26, Eq. (5.6.3)] 2d/dz[H (1)
n (z)] =

H (1)
n−1(z) − H (1)

n+1(z), we obtain

(
H (1)

0

)(m)(
k|X |u(Z)

) =
m∑

q=0

cm
q H (1)

q
(
k|X |u(Z)

)

and

∣∣H (1)
q (t)

∣∣ � L1

t1/2
, q ∈ Z, 0 � q � j, t � 0,

for certain constants cm
q and L1. Since | Y

|X | + ξ
| � L2|X | for some constant L2, estimates on the quantities (a) follow: for some
constant L3 we have∣∣∣∣(H (1)

0

)(m)
(

k|X |u
(

Y

|X | + ξ


))∣∣∣∣ � L3

|X |1/2
. (41)

Clearly, L3 depends on k, L2, 
 and M .
In order to estimate the quantities (b), in turn, we first note that for small Z and for all q � j we have

u(q)(Z) �
{

L4 if q is even,
L4 Z if q is odd

(42)

for some constant L4. It follows that

j∏
q=1

(
k|X |u(q)

(
Y

|X | + ξ


))mq

�

⎧⎨
⎩ L5|X |

∑j
q=1 mq−∑j/2

q=1 m2q−1 = L5|X |
∑j/2

q=1 m2q j is even,

L5|X |
∑j

q=1 mq−∑(j+1)/2
q=1 m2q−1 = L5|X |

∑(j−1)/2
q=1 m2q j is odd.

(43)

But, as is easily shown we have

j/2∑
q=1

m2q � j

2
for j even, (44)

and

(j−1)/2∑
q=1

m2q � j − 1

2
for j odd. (45)

Thus

j∏
q=1

(
k|X |u(q)

(
Y

|X | + ξ


))mq

�
{

L5|X | j
2 for j even,

L5|X | j−1
2 for j odd.

(46)

Combining (41) and (46) we obtain

∣∣∣∣ f [j]
(

X,
Y

|X | + ξ


)∣∣∣∣ �
{

L6|X | j
2 − 1

2 if j is even,

L6|X | j
2 −1 if j is odd

(47)

and, thus, in view of (38), the estimates (36) for the case 
 = 0 result.
The estimates (36) for first derivatives (cases 
 = 1, m = 1 and 
 = 1, m = 2) can be obtained in an entirely analogous

manner in view of the relation [26]

d

dz
H (1)

0 (z) = −H (1)
1 (z).

The proof is now complete. �
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4.3. Fast convergence of the quasi-periodic Green-function series (34)

In view of the relations (36) it is easy to estimate the rate of convergence of the series (34) and its term-wise derivatives.
Details in these regards are presented in the following theorem.

Theorem 4.4. Let j ∈ N, h > 0, 
 = 0 or 
 = 1, m = 1 or m = 2 and k > 0 be given. Then, for each M > 0 there exists a constant
D M > 0 (that also depends on j, k and h) such that, for all X , Y satisfying −L � X � L and −M < Y < M, ad for all integers N > 1,
we have∣∣∣∣ ∑

n∈Z,|n|>N

e−iαnL∂

mG j(X + nL, Y )

∣∣∣∣ �
{ D M

N(j−1)/2 for j even,

D M
N j/2 for j odd.

(48)

It follows that for 
 = 0 and 
 = 1 with m = 1 or m = 2:

1. The truncated series
∑N

n=−N e−iαnL∂

mG j(X +nL, Y ) (which, in the case 
 = 1 result from truncation and term-wise differentiation

of the Green-function series (34)) converge as N → ∞ to the corresponding quantities ∂

mG̃q

j , and

2. The corresponding approximation errors |∂

mG̃q

j −∑N
n=−N e−iαnL∂


mG j(X +nL, Y )| decrease at least as fast as N−(j−1)/2 for j even

and as fast as N−j/2 for j odd.

Proof. Follows directly from Lemma 4.3. �
Remark 4.5. The convergence estimates (48) can be strengthened for configurations that do not correspond to Wood anoma-
lies. Indeed, noting that the inequalities in Lemma 4.3 can be expressed as the sum of an asymptotic term (which, as is
given by a product of 1/Ns , for some s, and a smooth function, is a monotone function of 1/N for N large enough) plus
a higher-order correction and mirroring the proof of [9, Thm. 4.1] to estimate a sum between N and P in the present
context (for some P larger than our truncation integer N), the error bound that results from use of [9, Lemma 4.2] as in [9,
Thm. 4.1] can be used to obtain the improved error estimate

∣∣∣∣ ∑
n∈Z, |n|�N

e−iαnL∂

mG j(X + nL, Y )

∣∣∣∣ �
{ D M

N(j+1)/2 for j even,

D M
N j/2+1 for j odd.

(49)

The constant D M , which depends on the configuration under consideration, grows without bound when, as a result of
variations in frequency, period or incidence angle, a Wood configuration is approached.

4.4. G̃q
j null-space and complete rapidly-convergent Green function Gq

j

Following the discussion in Section 2.3 and in view of the introduction of the rapidly convergent Green function G̃q
j in

the previous sections it may be expected that the scattered fields us
D and us

N for the Dirichlet and Neumann problems
could be expressed in terms of the rapidly converging Green functions—using, e.g., the representations

us
D(x, y) =

∫
Γ#

∂ G̃q
j

∂ν(x′)
(
x − x′, y − f

(
x′))μ(

x′)ds(Γ#), (50)

us
N (x, y) =

∫
Γ#

G̃q
j

(
x − x′, y − f

(
x′))η(

x′)ds(Γ#). (51)

Such representations give the desired solutions for the Dirichlet and Neumann problems presented in Section 2.1 as long as
μ and η are solutions of the equations∫

Γ#

∂ν(x′)G̃q
j

(
x − x′, f (x) − f

(
x′))μ(

x′)ds
(
x′) + 1

2
μ

(
x′) = −uinc|Γ# , (52)

∫
Γ#

∂ν(x)G̃q
j

(
x − x′, f (x) − f

(
x′))η(

x′)ds
(
x′) − 1

2
η
(
x′) = −∂ν(x)u

inc|Γ# . (53)

As it happens, however, in many cases the operators on the left-hand sides of these equations are not invertible. More
precisely, as shown in what follows, the operators on the left-hand sides of Eqs. (52) and (53) are not invertible
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I. For certain “resonant” values of the shift parameter h (for which non-invertibility arises any frequency k, see Sec-
tion 4.4.1); and

II. At Wood anomalies (for which these operators are not invertible for any value of the shift parameter h, see Sec-
tion 4.4.2).

Roughly speaking, the difficulties I and II are associated with absence of a (finite) number of Rayleigh modes in the spectral
expansion of the quasi-periodic Green function G̃q

j . Fortunately, however, these difficulties are easily circumvented. We

describe these issues in detail in Sections 4.4.1 and 4.4.2 and then, in Section 4.4.3, we put forth a modified version Gq
j of

the Green function G̃q
j which does not suffer from either of the difficulties I or II.

4.4.1. G̃q
j null-space I: resonant shift parameter values hc

In view of Eqs. (15), (23) and (33), away from Wood anomalies we have

G̃q
j (X, Y ) =

∑
n∈Z

i

2Lβn

( j∑
m=0

(−1)mC j
meiβnmh

)
eiαn X eiβn Y =

∑
n∈Z

i

2Lβn

(
1 − eiβnh)j

eiαn X eiβn Y , (54)

so that, given an integer n0, for values of h = hc for which the resonance condition(
1 − eiβn0 hc

)j = 0 (55)

holds, the Green function G̃q
j (X, Y ) as a function of X (for any fixed value of Y ) does not contain the Rayleigh mode eiαn0 X :

the Rayleigh coefficient of order n0 of the function G̃q
j (X, Y ) equals zero.

In such cases the operators on the left-hand sides of Eqs. (52) and (53) are not invertible. Indeed, assuming Eq. (52)
(resp. (53)) is invertible, let us consider the solution μ (resp. η) that results from a right-hand side given by −uinc(x, f (x))
(resp. given by −∂ν(x)uinc(x, f (x))) with uinc(x, y) = eiαn0 x+iβn0 y (note that the exponent here differs from the one in Eq. (3)).
By uniqueness of solution of the Helmholtz equation (see Remark 2.4) we would then have us

D = −eiαn0 x+iβn0 y (resp.

us
N = −eiαn0 x+iβn0 y) throughout Ω—which is clearly not possible since, as mentioned above, for any fixed Y the Rayleigh

expansion of G̃q
j (X, Y ) does not contain the Rayleigh mode eiαn X for any value of the frequency k.

4.4.2. G̃q
j null-space II: Wood anomalies

Similar resonance conditions and associated non-uniqueness issues occur at Wood anomalies—as demonstrated in what
follows. Throughout this section we use the notation αn = αn(k, θ) and βn = βn(k, θ) to display explicitly the (k, θ) depen-
dence of the wave-numbers αn and βn , respectively. We assume k = k0 and a given incidence angle θ = θ0 gives rise to
a Wood configuration for the n-th Rayleigh mode—that is, βn(k0, θ0) = 0. For the present demonstration purposes, in this
section we further assume that for the given configuration there is one and only one value of n ∈ Z, namely n = n0, for
which βn(k0, θ0) vanishes: βn0(k0, θ0) = 0 and βn(k0, θ0) �= 0 for n �= n0. Then, it is easy to check that, as (k, θ) approaches
(k0, θ0), the limit of the expansion (54) for Gq

j is given by

G̃q
j (X, Y ) =

∑
n∈Z,n �=n0

i

2Lβn(k0, θ0)

( j∑
m=0

(−1)mC j
meimβn(k0,θ0)h

)
eiαn(k0,θ0)X eiβn(k0,θ0)Y

+ lim
β→0

i

2Lβ

( j∑
m=0

(−1)mC j
meimβh

)
eiαn0 (k0,θ0)X eiβY .

But, using the Taylor expansion of eimβh around β = 0 we obtain

lim
β→0

i

2Lβ

( j∑
m=0

(−1)mC j
meimβh

)
= lim

β→0

i

2Lβ

(
1 − eiβh)j = 0 for j � 2, (56)

and, thus, at the Wood anomaly configuration, G̃q
j does not contain the Rayleigh mode eiαn0 (k0,θ0)X . Thus, using an argument

similar to the one presented in Section 4.4.1 for resonant-shift cases, here we find that the operators on the right-hand sides
of Eqs. (52) and (53) are not invertible for any value of the shift parameter h.

Remark 4.6. Figs. 6 and 7 demonstrate the lack of invertibility of integral equation formulations based on the quasi-periodic
Green function G̃q

j at resonance values of the shift parameter and for Wood anomaly configurations. Note that Eq. (55) can
only hold for propagative modes (n0 ∈ U ) and, in particular, there can only be a finite number of values of n for which a
resonance of type (55) may occur.
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Remark 4.7. Not only do the two non-uniqueness issues discussed in Sections 4.4.1 and 4.4.2 translate into non-invertible
operators at resonant-shift and Wood-anomaly cases, but they also give rise to ill-posed numerical solvers around both,
Wood anomalies and resonant-shift values. Note that the non-uniqueness problem at Wood anomalies (which, incidentally,
occurs for j � 2 but not for j = 1, cf. Eq. (56)) is in some sense more fundamental that the non-uniqueness issue arising
from resonant-shift condition (55): the latter could be bypassed by adequate selection of the somewhat arbitrary shift
parameter h; the former, however, presents an impediment for evaluation of scattering solutions at and around physically
realizable Wood configurations.

4.4.3. Complete rapidly-convergent Green function Gq
j

The present section introduces slightly modified Green functions and corresponding integral equations that overcome the
null-space difficulties described in the previous two sections. As detailed in what follows, the modified Green functions are
obtained by simply adding to G̃q

j a multiple of each one of the Rayleigh modes eiαn X+iβn Y that it does not possess. Clearly,
such a procedure results in new outgoing Green functions, since the individual modes added are themselves outgoing
solutions of the Helmholtz equation (4) in the domain Ω . In particular, our algorithm does not resort to selection of
non-resonant shift parameters (cf. Remark 4.7).

To address the non-uniqueness issues arising from the resonance condition (55) we proceed as follows: letting ηr > 0
and

Uηr
r = {

n ∈ U such that
∣∣(1 − eiβnh)j∣∣ < ηr

}
(57)

we define a smooth Kernel Mr by

Mr(X, Y ) =
∑

n∈Uηr
r

eiαn X+iβn Y , X ∈ (−L, L), Y ∈R, (58)

which will be added to G̃q
j to eliminate resonant-kernel non-uniqueness in Eqs. (52) and (53). Similarly, to eliminate Wood

anomaly non-uniqueness in the integral Eqs. (52) and (53), for ηw > 0 we define

Uηw
w = {

n ∈ Z, such that
∣∣(1 − eiβnh)j∣∣ � ηw

}
(59)

and for n ∈ Uηw
w we let

cn = max
x∈(− L

2 , L
2 )

∣∣iαn f ′(x) − iβn
∣∣. (60)

Then, noting that cn is necessarily non-zero unless f ′ vanishes identically, for non-constant f we consider the smooth
kernel Mw,

Mw(X, Y ) =
∑

n∈Uηw
w

eiαn X+iβn Y

cn
, X ∈ (−L, L), Y ∈ R. (61)

Remark 4.8. For the (trivial) flat case ( f ′ = 0, constant f ) at Wood anomalies we have cn = 0 for some n, and thus Mw is
not defined. The needed kernels ∂ν(x′)Mw and ∂ν(x)Mw can nevertheless be extended to such cases using a limiting process,
and it can thus be seen that integral equations and PDE solutions vary continuously as the flat-surface case is approached
(except for the Neumann problem at horizontal incidence (|α| = k) which, for the flat surface, does not admit a unique PDE
solution). Indeed for f ′ identically equal to zero we have cn = |βn|, and thus

lim
βn→0

∂ν(x′)

{
eiαn(x−x′)+iβn(y−y′)

|βn|
}

= −ieiαn(x−x′) lim
βn→0

βn

|βn| .

Noting that limβn→0
βn
|βn| equals either 1 or i (depending on the sign of (k2 − α2

n ) as the Wood anomaly is approached), for
the flat case at Wood anomalies we replace ∂ν(x′)Mw(x − x′, y − y′) and ∂ν(x)Mw(x − x′, y − y′) by one of the two possible
associated limits, say,

{∂ν(x′)Mw}(x − x′, y − 0
) → −i

∑
n∈Uηw

w

eiαn(x−x′) and (62)

{∂ν(x)Mw}(x − x′, y − 0
) → i

∑
n∈Uηw

w

eiαn(x−x′). (63)

It is easy to check that these alternative definitions for the flat case at Wood anomalies (or, indeed, any definition as a sum
of arbitrary non-zero multiples of all exponentials eiαn(x−x′) for n ∈ Uw) all give rise to one and only one integral-equation
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solution for the flat-interface Wood-anomaly case—as long as the right-hand side of the integral equation is orthogonal to
eiαnx for all n ∈ Uηw

w . Under the latter condition and using considerations concerning uniqueness properties (Remark 2.4),
further, it can be checked that these definitions lead to solutions μ and η of the integral equations as well as scattered
fields us

D and us
N that vary continuously as the flat-interface/Wood-anomaly case is approached.

Using these additional kernels we can now define a periodic Green function for all smooth periodic interfaces with
f ′ �= 0, all incidence angles and all frequencies, namely

Gq
j (X, Y ) = G̃q

j (X, Y ) + Mr(X, Y ) + Mw(X, Y ); (64)

with the special considerations specified in Remark 4.8, the methodology is extended naturally, with continuous solutions,
to the trivial flat case f ′ = 0. The resulting second kind integral equations for the Dirichlet and Neumann are given by

1

2
μ(x) +

∫
Γ#

{
∂ν(x′)Gq

j

}(
x − x′, f (x) − f

(
x′))μ(

x′)ds
(
x′) = −uinc|Γ# and (65)

−1

2
η(x) +

∫
Γ#

{
∂ν(x)Gq

j

}(
x − x′, f (x) − f

(
x′))η(

x′)ds
(
x′) = −∂ν(x)u

inc|Γ# . (66)

The Dirichlet and Neumann scattering problems under consideration for non-flat rough surfaces thus reduce to finding
density functions μ ∈ Cα

# (Γ#) and η ∈ Cα
# (Γ#) such that Eqs. (65) and (66) are satisfied, where Cα

# (Γ#) denotes the space
of continuous α-quasi-periodic functions. A general discussion of existence and uniqueness for these problems that extends
previous results (cf. Remark 2.4) to Wood anomaly cases will be presented elsewhere. Numerical algorithms based on these
equations and corresponding numerical results are presented in Sections 5 and 6 below.

5. Numerical algorithm

Our numerical method for the solution of Eqs. (65) and (66) incorporates the windowing and shifting methodologies
introduced in Sections 3 and 4 for evaluation of integral operators at all frequencies together with a suitable modified
version of a well known Nyström approach for high-order evaluation of logarithmic integral operators. This section presents
the details of a numerical implementation of the combined windowing-shifting based Nyström approach.

5.1. Kernel decomposition in a periodic setting

The Martensen–Kussmaul (MK) Nyström approach [15,25,31,41] relies on decomposition of the integral kernel as a sum
of a smooth kernel and a logarithmic term. We present our decomposition for the Dirichlet equation (65); the method for
Neumann equation (66) is entirely analogous.

Like previous MK approaches, our MK Nyström method is based on use of the periodic unknowns: using the change of
unknown μ̃(x) = μ(x)e−iαx we re-express the integral on the left-hand side of Eq. (65) in the form

L
2∫

− L
2

{
∂ν(x′)Gq

j

}(
x − x′, f (x) − f

(
x′))φ(

x, x′)μ̃(
x′)√1 + f ′(x′)2

dx′ + 1

2
μ̃ = −uinc|Γ# e−iαx, (67)

where μ̃ is a periodic function of period L and where φ(x, x′) = e−iα(x−x′) . In view of (64) and expressing the integral
involving the periodic Green function G̃q

j as an integral between −∞ and ∞ (cf. Eq. (20) where the corresponding identity
for the kernel Gq is displayed) the integral on the left-hand side of (67) can be expressed in the form

L
2∫

− L
2

∂ν(x′){Mr + Mw}(x − x′, f (x) − f
(
x′))φ(

x, x′)μ̃(
x′)√1 + f ′(x′)2

dx′

+
+∞∫

−∞
{∂ν(x′)G j}

(
x − x′, f (x) − f

(
x′))φ(

x, x′)μ̃(
x′)√1 + f ′(x′)2

dx′. (68)

The integrand in the first term of Eq. (68) is smooth and periodic, and, therefore, the corresponding integral operator can
be evaluated with high-order accuracy by means of the trapezoidal rule [15]. To compute the second term in (68), in turn,
we first truncate the integral using the windowing technique introduced in Section 3. That is we approximate the second
integral (68) by
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+∞∫
−∞

S
(
x − x′, c A, A

)
∂ν(x′)G j

(
x − x′, f (x) − f

(
x′))φ(

x, x′)μ̃(
x′)√1 + f ′(x′)2

dx′ (69)

for adequately selected positive constants c and A, and we then evaluate the integral (69), with high-order accuracy, by
accounting explicitly for the logarithmic singularity at (x − x′) = 0. To do this we follow [15] and note that, for |x − x′| � 2π ,
the kernel ∂ν(x′)G j can be expressed in the form

∂ν(x′)G j
(
x − x′, f (x) − f

(
x′)) = K1

(
x, x′) ln

[
4 sin2

(
x − x′

2

)]
+ K2

(
x, x′), (70)

where

K1
(
x, x′) = k

4π

f (x′)(x − x′) − ( f (x′) − f (x))√
1 + f ′(x′)2

J1(k
√

(x − x′)2 + ( f (x) − f (x′))2)√
(x − x′)2 + ( f (x) − f (x′))2

,

and

K2
(
x, x′) = ∂ν(x′)G j

(
x − x′, f (x) − f

(
x′)) − K1

(
x, x′) ln

[
4 sin2

(
x − x′

2

)]
,

are smooth functions.
In the context [15] the condition |x − x′| � 2π is always satisfied; unfortunately, however, this is not the case for the

integration problem (69): under the present conditions, use of the decomposition (70) for −∞ < x − x′ < ∞, would give
rise to singularities whenever x − x′ is an integer multiple of 2π . To overcome this difficulty we utilize an additional cut-off
function that vanishes outside a sufficiently small local neighborhood of the singular point x′ = x: taking 0 < A
 < L/2,
0 < d
 < 1 and recalling Eq. (17) we define the “local” windowing function

P


(
x − x′,d
, A


) = S
(
x − x′,d
 A
, A


)
, d
, A
 ∈ R>0, (71)

and we decompose the integrand in (69) in the form

S
(
x − x′, c A, A

)
∂ν(x′)Gq

j

(
x − x′, f (x) − f

(
x′))φ(

x, x′)√1 + f ′(x′)2

= K


(
x, x′) ln

[
4 sin2

(
π

L

(
x − x′))]

+ Kr
(
x, x′) (72)

where

K


(
x, x′) = k

4π
P


(
x − x′,d
, A


) f (x′)(x − x′) − ( f (x′) − f (x))√
(x − x′)2 + ( f (x) − f (x′))2

× J1
(
k
√(

x − x′)2 + (
f (x) − f

(
x′))2)

, (73)

and where

Kr
(
x, x′) = S

(
x − x′, c A, A

)
∂ν(x′)Gq

j

(
x − x′, f (x) − f

(
x′))φ(

x, x′)√1 + f ′(x′)2

− K


(
x, x′) ln

[
4 sin2

(
π

L

(
x − x′))]

. (74)

It is easy to check that, given the assumptions 0 < A
 < L/2 and 0 < d
 < 1, K
 and Kr are smooth functions of x and x′ ,
and, thus, the MK methodology can be used for evaluation of the integral (68)—as detailed in the following section.

5.2. MK quadrature rules

To derive MK quadrature rules in the present context we consider the decomposition (72) and we re-express the inte-
gral (68) in the form

L
2∫

− L
2

K per
r

(
x, x′)μ̃(

x′)dx′ +
+∞∫

−∞
Kr

(
x, x′)μ̃(

x′)dx′ +
+∞∫

−∞
K


(
x, x′) ln

[
4 sin2

(
π

L

(
x − x′))]

μ̃
(
x′)dx′, (75)

where K per
r (x, x′) = ∂ν(x′){Mr + Mw}(x − x′, f (x) − f (x′))φ(x, x′)

√
1 + f ′(x′)2 is a smooth and L-periodic kernel; note that

all integrands in the (−∞,∞) integrals in (75) are compactly supported functions with supports contained in the interval
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(x − A, x + A). We additionally use an equispaced discretization mesh containing an even number nI of points per period
of the scattering surface: denoting by N = � A

L � the number of periodic intervals contained in the integration domain to the
right of the point x = L

2 (where �x� denotes the smallest integer larger than or equal to x), the quadrature rule uses a total
of (2N + 1)nI quadrature points x j given by

x j =
(

− L

2
− N L

)
+ ( j − 1)

L

nI
, j ∈N, j � (2N + 1)nI ,

over an integration domain consisting of 2N + 1 periodic intervals.
Our MK quadrature rule for |x| < L/2 then results as follows: The first integral in Eq. (75) is evaluated with high-order

accuracy by means of the trapezoidal rule formula

L
2∫

− L
2

K per
r

(
x, x′)μ̃(

x′)dx′ ≈ L

nI

∑
− L

2 �|x−x j |� L
2

Kadd(x, x j)μ̃(x j). (76)

Similarly, the second term in (75) is integrated with high-order accuracy by means of the trapezoidal rule expression

+∞∫
−∞

Kr
(
x′, x

)
μ̃

(
x′)dx′ ≈ L

nI

∑
|x−x j |�A

Kr(x, x j)μ̃(x j). (77)

Finally, the third term in (75) (the singular integral) is approximated by means of the MK quadrature rule

+∞∫
−∞

K


(
x, x′) ln

[
4 sin2

(
π

L

(
x − x′))]

μ̃
(
x′)dx′

=
x+ L

2∫
x− L

2

K


(
x′, x

)
ln

[
4 sin2

(
π

L

(
x − x′))]

μ̃
(
x′)dx′

≈ L

2π

∑
|x−x j |�A


R j,nI

(
2πx

L

)
K
(x, x j)μ̃(x j), (78)

where

R j,nI (t) = 1

nI

nI
2∑

q=− nI
2 +1

2π∫
0

eiq(
2πx j

L +τ−t) ln

(
4 sin2 τ

2

)
dτ . (79)

Formula (78) is obtained by introducing the change of variables t = 2π
L x, τ = 2π

L x′ and expressing K
(x, x′)μ̃(x′) as a Fourier
series. Using the relation [23, Ch. 12]

1

2π

2π∫
0

ln

(
4 sin2 τ

2

)
eimτ dτ =

{
0 if m = 0,

− 1
m m = 1,2, . . .

we obtain

R j,nI

(
2πxi

L

)
= −4π

nI

[ nI
2∑

q=1

1

|q| cos

(
q

(
2π

L
(xi − x j)

))]
− 4π

n2
I

cos

(
nI

2

(
2π

L
(xi − x j)

))
(80)

and our basic MK quadrature rule for the integral (75) is complete.
The next two sections describe certain accuracy and efficiency difficulties that arise from direct application of the MK

algorithm described in this section, and they put forth modified procedures that eliminate such difficulties. Thus, Section 5.3
introduces an inexpensive local quadrature method for nearly-singular integrals that arise for small values of the shift
parameter h (see Eq. (33)), and Section 5.4 presents an asymptotic method that can be used to accelerate the computation
of the large numbers of large-argument Hankel functions that are needed in our Green-function procedure. As demonstrated
in Section 6, once these elements are introduced a highly accurate and efficient all-frequency algorithm results.
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Fig. 2. Left. Sample scattering surface y = f (x) = π cos(x) (solid line) and shifted surface y = f (x) − h with h = 0.8. Note that the two surfaces are very
close to each other at x = π : the minimum distance between the two surfaces is 0.24. Right. Grid refinement: coarse grid xi and fine grid y j .

5.3. Accurate integration around “nearly singular points” in shifted Green functions

It is useful to note that, as far as the decay of the Green function (33) and associated rapid convergence of the quasi-
periodic Green function (23) are concerned, it is advantageous to use small values of the shift parameter h: small shift
values give rise to correspondingly smaller values of the Green-function expression (33) for a given value of X (see e.g.
Eq. (38)) and, thus, to accurate approximation of infinite integrals via integration over reduced numbers of periods. Unfor-
tunately, however, although the kernel Kr defined in (74) is smooth and periodic for arbitrarily small values of h, a direct
application of the trapezoidal quadrature rule for the second term in (75) with a mesh-size that is no finer than is needed
for resolution of the wavelength may yield inaccurate results when the surface Γ and its downward h-shifted counterpart
Γ − h (see Eq. (33)) are close to each other. This accuracy loss is easily understood. For example, for small values of h and
for a given x ∈ (0; L), the kernel in the shifted integral

xi+A∫
xi−A

∂ν(x′)H (1)
0

(
k
√(

xi − x′)2 + (
f (xi) − f

(
x′) + h

)2)
μ

(
x′)dx′, A > 0, (81)

which is part of the integrand in (75), is nearly singular (with a logarithmic near-singularity) for values of x′ in a neighbor-
hood of x′ = x. Clearly, further, the distance between Γ and Γ −h is smaller for steep surfaces Γ than it is for gently-sloped
surfaces; the situation is illustrated on the left portion of Fig. 2: the small distance between Γ and Γ − h at regions where
Γ is steep can be easily appreciated.

To reestablish accuracy we smoothly partition the integration domain and we use a finer mesh in a region around the
observation point x′ = x. Thus, using a smooth cut-off function χ of the general form (17), for the test case considered
above in this section, for example, we write

x+A∫
x−A

∂ν(x′)H (1)
0

(
k
√(

x − x′)2 + (
f (x) − f

(
x′) + h

)2)
μ

(
x′)dx′

=
x+A∫

x−A

∂ν(x′)H (1)
0

(
k
√(

x − x′)2 + (
f (x) − f

(
x′) + h

)2)(
1 − χ

(
x − x′))μ(

x′)dx′

+
x+A∫

x−A

∂ν(x′)H (1)
0

(
k
√(

x − x′)2 + (
f (x) − f

(
x′) + h

)2)
χ

(
x − x′)μ(

x′)dx′. (82)

The first integral on the right-hand side of this equation, which is not nearly singular provided the function χ on the
right-hand side of this equation is adequately selected, is accurately approximated by means of the classical trapezoidal
rule on the coarse mesh xi . For the second right-hand integral, in turn, we use a fine equispaced quadrature mesh {y
}.
The necessary coarse-grid to fine-grid interpolations are produced, in our algorithm, by evaluation of the discrete Fourier
transform for the discrete version of the periodic quantity μ(x′)e−iαx′

on the coarse mesh xi and subsequent evaluation of
the resulting finite Fourier series on the fine mesh y
 , as detailed below in this section.

A few comments are in order with regards to the selection of the windowing function χ , the fine-integration region
and the associated fine mesh. We first note that while the (nearly singular) integral containing the factor χ needs to be
approximated by means of a fine integration mesh, the integral containing the factor (1 − χ) can be produced accurately
by means of the coarser background integration mesh—provided the windowing function χ has a sufficiently broad support
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and a sufficiently mild slope. It is therefore not advisable to use a very narrow fine-integration region around x′ = x: doing
so would lead to a steep function χ , and, thus, to low accuracies arising from the coarse mesh integration of the integral
containing the factor (1 − χ). We have therefore found it convenient to utilize a windowing function χ whose support
spans several periods, and which, in particular, can be selected independently of x. We thus take our fine integration mesh
to be given by

y
 = −Q L + (
 − 1)�y, �y = L

n f
, 1 � 
 � 2Q n f

(right portion of Fig. 2), where n f and Q are positive integer numbers. (Clearly n f the number of points per period in
the fine integration mesh and 2Q is the number of periods in the fine-integration region.) Of course, n f must be taken to
be larger than nI in order to make the near-singular integration method accurate for a given profile Γ and a given shift
parameter h. Additionally, Q can and should be taken to be much smaller than the number N in the overall integration
region, to avoid excessive fine-integration costs. In practice we have found the value Q = 4 is small enough not to give rise
to significant additional computing cost as a result of the fine-integration procedure, and sufficiently large to enable use of
an adequately gently sloped windowing function χ .

The second integral on the right-hand side of Eq. (82) is thus approximated by trapezoidal-rule integration based on the
fine grid {y
}:

x+A∫
x−A

∂ν(x′)H (1)
0

(
k
√(

x − x′)2 + (
f (x) − f

(
x′) + h

)2)
χ

(
x − x′)μ(

x′)dx′

≈ �y

2Q n f∑

=1

∂ν

(
x′)H (1)

0

(
k
√

(x − y
)2 + (
f (x) − f (y
) + h

)2)
χ(x − y
)μ(y
).

Since μ is a smooth and periodic function, the needed fine-mesh values μ(y
) can be obtained via fine-mesh evaluation of
a truncated Fourier series of μ:

μ(y
) ≈
nI /2∑

p=−nI /2+1

μpe2ipπ y
/L with μp ≈ �x
nI /2∑

q=−nI /2+1

μ(xq)e−2iqπxq/L . (83)

Remark 5.1. In practice we have found that, even though the procedure presented in this section gives rise to accurate
integration for arbitrarily small values of the shift parameter h, use of values of h that are smaller than certain thresholds
make the discrete versions of the integral Eqs. (65) and (66) ill-conditioned and thus result in accuracy limitations. The
parameter h should therefore be selected by means of test runs designed to optimize efficiency for a prescribed error
tolerance; see also Remark 5.2.

Remark 5.2. In view of the limited expense associated with the singularity treatment algorithm introduced in this section,
a simple prescription can be given for selection of the fine mesh-size value �y introduced in this section, namely, to use
�y = �x

R (or, equivalently, n f = RnI ), for some moderate value of R , in the prescribed number Q of nearby periods. These
parameters can be chosen by means of integration convergence analyses involving explicit densities μ (e.g. μ equal to the
values on Γ of the incident field). In practice we have found that for h large enough no such refinement is necessary. In
the examples considered in this paper we have used 0.8 < h < 3; for lower values the ill conditioning difficulty mentioned
in Remark 5.1 becomes noticeable, specially for deep gratings, and makes the accuracy levels demonstrated in Section 6
difficult to obtain. We have found that, for h = 0.8, for example, the values R = 8 and Q = 4 adequately resolve the near
singularity, and that higher values of R do not give rise to improved accuracies in the numerical integration and solution
processes.

5.4. Efficient evaluation of Gq
j via accurate asymptotic expansions

In view of our reliance on the half-space Green function G j for evaluation of the complete quasi-periodic Green function
Gq

j (Eqs. (64), (23) and (33)), the computation of Gq
j and its derivatives in principle requires evaluation of Hankel functions

for a number of arguments—which could require relatively long computing times. Additionally, since the rapid decay of the
half-space Green function G j is derived from cancellation of Hankel-function values that decay less rapidly than G j itself, a
direct evaluation of the G j gives rise to cancellation errors which can be noticeable in some cases (see Figs. 4 and 5). Both
of these difficulties can be addressed effectively via consideration of asymptotic expressions for the Green function G j , as
indicated in what follows.

We consider the case j = 1 first. Letting zn = √
(X + nL)2 + Y 2 we obtain
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G1(X + nL, Y ) = H (1)
0

(
k
√

(X + nL)2 + Y 2
) − H (1)

0

(
k
√

(X + nL)2 + (Y + h)2
)
. (84)

Using the large z asymptotic expression [26, Eq. (5.11.15)]

H (1)
0 (z) = eiz

√
z

(
h0 + h1

z
+ h2

z2
+ · · · + hm

zm

)
+ O

(
z−(m+1)

)
(85)

(where hr are constant complex coefficients given by simple expressions) together with the relation

√
(X + nL)2 + (Y + h)2 = zn

(
1 + g

z2
n

)1/2 (
g = 2Y h + h2),

and expanding (84) in powers of 1/zn , we find that the term involving the constant h0 cancels exactly (thus eliminating
numerical cancellation errors) and we obtain

G1(X + nL, Y ) = eizn

√
zn

(
d1

zn
+ d2

z2
n

+ d3

z3
n

+ · · · + dm

zm
n

+ O
(
zm+1

n

))
(86)

for certain explicitly computable coefficients dr which depend on g and the coefficients hr .
A similar procedure can be applied for the evaluation of the shifted Green function G j of any order j; for general j we

obtain an expansion of the form

G j(X + nL, Y ) = eizn

√
zn

(
dj

1

z J
n

+ dj
2

z J+1
n

+ dj
3

z J+2
n

+ · · · + dj
m

z J+m
n

+ O
(
z J+m+1

n
))

(87)

where J = j/2 for even j and J = (j+1)/2 for odd j (cf. Lemma 4.3). As in the case j = 1, the coefficients dj
r can be evaluated

explicitly in terms of the parameter g . The algebra becomes more and more substantial as j grows, but the calculations can
be greatly facilitated by application of a computer algebra system such as Maple or Mathematica: what is needed is, simply,
evaluation of finite order Taylor expansions in powers of the small parameter γ = 1/zn for the quantity

√
zn

eizn
Gasym

j (X + nL, Y ),

where Gasym
j is the asymptotic expansion of G j that results from use of the expansion (85) in the expression (33). Our

numerical examples utilize values dj
r for r between r = 1 and r = 4.

The evaluation of the periodic Green function (64) can thus be achieved accurately and at a substantially reduced cost by
substituting G j(X +nL, Y ) in (23) by a sum of the first m terms in an expansion of the form (87) for sufficiently large values
of n. It is interesting to note that the expansion (86) can be used for all n large enough, and, thus, the cost of evaluation of
the expansion coefficients dj

r is readily amortized and, indeed, it becomes insignificant when compared to the cost of other
portions of the Green-function evaluation.

Remark 5.3 (Algorithm for selection of parameters in the expansion (87)). The expansion order m used in Eq. (87) for a given
range of values of n should be selected to meet a prescribed error tolerance ε in the final solution while minimizing
computational cost. The parameter m can thus be approximately selected, for each n, as the smallest integer for which the
integral of the error term in (87) is of the order of the error tolerance,∣∣∣∣∣

+∞∫
0

O
(
z J+m+1

n
)∣∣∣∣∣ < ε,

for all relevant values of Y . Estimating this remainder by the term of order J + m + 1 in expansion (87) and letting Aj
m+1 =

sup(x,x′)∈(0,L)2 |dj
m+1|, the “negligible-remainder” condition may be expressed in the form

∣∣∣∣∣
+∞∫

nL

Aj
m+1

(
√

(x − x′)2 + ( f (x) − f (x′))2) J+m+3/2
dx′

∣∣∣∣∣ < ε.

Approximating, further,
√

(x − x′)2 + ( f (x) − f (x′))2 ≈ |(x′ − L)|, the negligible-remainder condition becomes

Aj
m+1

((n − 1)L) J+m+1/2( J + m + 1/2)
< ε

or, for large n,



O.P. Bruno, B. Delourme / Journal of Computational Physics 262 (2014) 262–290 281
n >
1

L

(
Aj

m+1

ε( J + m + 1/2)

) 1
J+m+1/2

. (88)

In practice we have used m � 3 in order to avoid complex closed-form expressions that arise for the coefficients dj
r for r

large. (Since the value dj
m+1 is needed to evaluate n in the negligible-remainder condition (88), our numerical examples

have thus utilized values of dj
r with 1 � r � 4.) Under this restriction our parameter-selection algorithm uses three cutoff

values n3, n2 and n1, each one of which is defined as the maximum between a certain “asymptotic cutoff” integer nmin and
one plus the integer part of the value formula on the right-hand side of (88) with m = 3, 2 and 1, respectively. (Noting that
our asymptotic analysis is valid as long as the regime for which the asymptotic expressions used are accurate, the integer
nmin is used to insure that the asymptotic regime has indeed been reached.) In terms of these cutoff integers, the needed
values of the function G j(X + nL, Y ) are obtained as follows:

– For n < n3, G j(X + nL, Y ) is evaluated by means of the exact formula (23).
– For n3 � n < n2, G j(X + nL, Y ) is evaluated by means of the approximation (87) with m = 3.
– For n2 � n < n1, G j(X + nL, Y ) is evaluated by means of the approximation (87) with m = 2.
– For n � n1, G j(X + nL, Y ) is evaluated by means of the approximation (87) with m = 1.

For all of our experiments we used the asymptotic cutoff value nmin = 10.

5.5. Pseudo-code

The following pseudo-code summarizes the algorithm described in Sections 5.1 through 5.4.

1. Initialization of physical and algorithmic parameters.
1.1. Input of physical parameters: wave number k, incidence angle θ , grating profile function f and polarization (Dirich-

let or Neumann boundary conditions).
1.2. Input of basic algorithmic parameters: j, h, nI , m and N: Green-function order, shift, number of discretization points

per period, number of terms used in the asymptotic expansion (87), and number of periods used in the periodic
Green-function summation, respectively. Parameters should be selected so as to ensure the overall solution meets a
prescribed error tolerance ε; guidance in these regards is provided in Remarks 5.1, 5.2 and 5.3.

1.3. Input of other necessary algorithmic parameters mentioned in point 2 below.
2. Construction of the system matrix for the Dirichlet equation (65) or the Neumann equation (66), as required per

point 1.1 above.
2.1. Detection of near-Wood configurations and near-resonant shift parameter values per Eqs. (57) and (59) for pre-

scribed tolerance parameters ηw and ηr (for all of the numerical experiments considered in this paper the values
ηr = ηw = 0.2 were used). Inclusion of corresponding Green-function correction terms Mw and Mr if near-Wood or
near-resonant conditions occur.

2.2. Detection of near singularities in accordance with Remark 5.2 and, if existent, construction of the matrix associated
with the nearly singular kernel, as described in Section 5.3.

2.3. Construction of the matrix associated with the singular kernel (73) using the MK quadrature rule (78).
2.4. Construction of the matrix associated with the regular kernel (74):

– Evaluation of the coefficients d j
r of the asymptotic expansion of the Green function (87) for r � m; in all the

examples in Section 6 we have used m = 4.
– Evaluation of the needed values of the regular Kernel Kr (defined in Eq. (74)) via the asymptotic expansion (87)

or the exact expression (74), following the prescriptions in Remark 5.3.
3. Evaluation of discrete right-hand side values by means of a standard discretization of source terms in (65)–(66).
4. Solution of the linear system resulting from points 2 and 3 above by means of Gaussian elimination (LU decomposition

and back-substitution).
5. Post-processing. Evaluation of scattering efficiencies and defect in energy balance (by substitution of a spectral expan-

sion of the Green function Gq
j arising from (54) and (64) into the integral expression of the scattered field) and, if

required, the scattered field at prescribed points in space.

6. Numerical results

This section presents numerical tests and examples that demonstrate the properties of the rapidly convergent Green
functions and scattering solvers introduced in previous sections—including at and near Wood-anomaly configurations. For
definiteness the examples presented in this section concern problems of scattering by two families of profiles Γ (Eq. (1)),
namely, the sinusoidal profile family f = f1 and the multi-frequency profile family f = f2 where

f1(x) = H L
cos

(
2πx

)
and f2(x) = π H

(
0.4 cos x − 0.2 cos(2x) + 0.4 cos(3x)

)
(89)
2 L
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Fig. 3. Grating profiles y = f1(x) = H L
2 cos 2πx

L for L = 2π and H = 1 (left) and y = f2(x) = π H(0.4 cos x − 0.2 cos(2x) + 0.4 cos(3x)) with H = 1 (right).

for various values of L and H ; see Fig. 3. The profile y = f1(x) is the prototypical example of a rough surface; with the
present conventions these are sinusoids of period L and height-to-period ratio H with peak-to-trough height equal to H L.
The multi-frequency profile y = f2(x), in turn, is used in this section to demonstrate the new solvers for a somewhat more
generic rough surface. The examples in this section include solutions for a range of frequencies and incidence angles. All
solutions presented in this section were produced by means of a Fortran implementation of the methods and algorithms
described in Sections 4 and 5 together with the LAPACK Gaussian elimination routines for solution of matrix equations, on
a single core of a Xeon X 5670 processor.

Detailed numerical results presented in the following sections concern Green-function convergence (Section 6.2), effect
of Green-function completion terms (Section 6.3), convergence of forward-maps, solutions and efficiencies (Section 6.4),
computing costs (Section 6.5), and frequency-efficiency curves under Littrow mounts (Section 6.5). As a preface to these
numerical tests, Section 6.1 summarizes theoretical results on convergence rates for Green functions, forward maps, solutions
and efficiencies that were presented in (or follow from) the theoretical results presented in Section 4.

6.1. Convergence-rate summary: Green functions, forward maps, solutions and efficiencies

The following list summarizes the convergence properties of the various quantities of interest at and away from Wood-
anomaly configurations.

1. Decay order exhibited by the half-plane Green function G j(X, Y ) and its first derivatives as X → ∞ (Lemma 4.3):

j + 1

2
for j even and

j

2
+ 1 for j odd.

2. Convergence order of the −N � n � N truncated series for the rapidly convergent quasi-periodic Green function
G̃q

j (X, Y ) and its derivatives—
2.1. —at Wood-anomaly configurations (Theorem 4.4):

j − 1

2
for j even and

j

2
for j odd;

2.2. —away from Wood-anomaly configurations (Remark 4.5):

j + 1

2
for j even and

j

2
+ 1 for j odd.

3. Convergence order as N → ∞ of the (continuous) forward map—
3.1. —at Wood-anomaly configurations: the same as the convergence orders shown in item 2.1 above.
3.2. —away from Wood-anomaly configurations: super-algebraically fast, in spite of the result in item 2.2 above, and in

view of the super-algebraic convergence induced in the integration process by the smooth windowing methodology
described in Section 3.

4. Convergence order as N → ∞ of individual efficiencies—
4.1. —at Wood-anomaly configurations: as shown in items 2.1 and 3.1 for j odd, and one order higher than the ones

shown items 2.1 and 3.1 for j even (Remark 6.1), that is to say

j + 1

2
for j even and

j

2
for j odd.

4.2. —away from Wood-anomaly configurations: super-algebraically fast, per the rationale in point 3.2.
5. Convergence to zero of the energy balance error—
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Fig. 4. Absolute approximation error in the rapidly convergent Green function Gq
j as a function of the truncation parameter N for various differencing

orders j at the frequency k = 1.5—which is away from the set of {1,2,3, . . .} of Wood anomaly frequencies for this setup. Left: Direct evaluation of the
expression (33) for all values of n. Right: Asymptotic method described in Section 5.4. Note that the curves for j = 1 and j = 2, both of which have a slope
of 3/2, are virtually indistinguishable from each other.

Fig. 5. Same as Fig. 4 but for the Wood anomaly frequency k = 1. Once again the j = 1 and j = 2 curves, which in this case have a slope of 1/2, are virtually
indistinguishable from each other.

5.1. —at Wood-anomaly configurations: The same as in point 4.1 above.
5.2. —away from Wood-anomaly configurations: super-algebraically fast, per the rationale in point 3.2.

Remark 6.1. The convergence rate for the j odd case in point 4.1 above is in accordance with the corresponding Green
function convergence rate (point 2.1). In contrast, a theoretical basis has not been found as yet for the higher efficiency
convergence rates which, as mentioned in point 4.1, are observed in practice for even values of j.

6.2. Green-function convergence rates for various differencing orders

Figs. 4 and 5 display the maximum absolute error

max
(X,Y )∈(−π,π)×(−π,π)\(0,0)

∣∣∣∣∣G̃q
j (X, Y ) −

N∑
n=−N

e−iαnL G j(X + nL, Y )

∣∣∣∣∣ (90)

in the rapidly convergent Green functions of various orders j for two frequencies, namely, non-Wood-anomaly frequency k =
1.5 and the Wood-anomaly frequency k = 1. For these experiments the values L = 2π , θ = 0 and h = 2.3 were used for the
period, incidence angle and shift parameter, respectively. The maximum in Eq. (90) was approximated as the corresponding
maximum over all points (X, Y ) �= (0,0) in a 201 × 201 Cartesian grid in the square (−π,π) × (−π,π).

The left portions of Figs. 4 and 5 present results that arise as the direct differencing formula (33) is used for all val-
ues of N; a convergence stall is clearly noticeable at large values of N , which, as mentioned in Section 5.4, results from
cancellation errors in the differencing process. The corresponding right-hand figures, in turn, display results produced by
the asymptotic-approximation algorithm described in Section 5.4. The asymptotic approach clearly eliminates the large-N
cancellation errors. The slopes of the curves displayed in Figs. 4 and 5 are in agreement with the convergence rates cited in
point 2 of Section 6.1.

6.3. Integral equations: null-spaces and effect of Green-function completion terms

To demonstrate the ability of the completion terms introduced in Eq. (64) to eliminate the null-space problems described
in Section 4.4, in Sections 6.3.1 and 6.3.2 below we present solutions of problems of scattering produced by means of the
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Fig. 6. Condition number (left) and energy balance error (right) as functions of the shift parameter h around the resonant value hc ≈ 3.3432. Solid (resp.
dashed) curves: quantities resulting from use of the incomplete (resp. complete) Green function G̃q

j (resp. Gq
j ).

basic and complete rapidly-convergent Green functions G̃q
j and Gq

j (Eqs. (23) and (64), respectively). In those experiments
scattering problems are considered for the surface f (x) = π

10 cos(x) (L = 2π , H = 1/10) under an incident angle θ = π/9.

6.3.1. Effect of completion terms at and around resonant shift parameter values h = hc

Using the wavenumber k = 2 we consider solvers that from use of the basic and complete rapidly-convergent Green
functions G̃q

j and Gq
j with j = 5 and with values of h at and around h = hc , where hc = 2π

β0
≈ 3.3432 is a resonant shift value

(see Eq. (55)). As shown in the left portion of Fig. 6, the discrete problem associated with the integral equation (52), which is
based on use of the basic (incomplete) Green function G̃q

j , is ill-conditioned for shift values h close to hc . We have checked
that similar ill-conditioning occurs for the integral equation (53) as well as for both of these equations at other values of h
in the resonance set H = {h > 0: h = 2πq

βn
, q ∈ N, n ∈ U }. The right portion of Fig. 6 demonstrates that, as expected, large

errors (as evidenced by corresponding departures from zero of the defect in the energy-balance condition (12)) also occur
in such cases. These graphs also display the corresponding condition numbers and energy-balance errors resulting from
use of the complete Green function Gq

j ; clearly good conditioning and high-accuracies are restored by the Green-function
completion process.

6.3.2. Effect of completion terms at and around Wood anomaly configurations
A situation similar to the one described in the previous section takes place at Wood anomalies: ill conditioning and

large errors arise at and around Wood anomaly configurations if the basic Green function G̃q
j is used; as indicated in

Remark 4.7, however, at Wood anomalies such difficulties only arise for j � 2. To demonstrate the restorative character
of the Green-function completion terms at Wood anomalies we consider once again the scattering surface and incidence
angle mentioned at the beginning of Section 6.3. The set of Wood anomaly frequencies for this problem is given by W =
{k ∈ R

2, k2 = (k sin(θ) + n)2, n ∈ Z}; for the present example we consider wave-numbers in a neighborhood of the n = −1
Wood anomaly value k = k−1 = 1/(1 + sin(θ)) ≈ 0.74. To eliminate resonance effects associated with the shift parameter we
select the non-resonant shift value h = 2 (see Eq. (55)) and we consider basic and complete Green functions of order j = 7.

Fig. 7 displays the k-dependence of the condition number (left) and energy balance defect (right) which result from
discretization of the incomplete and complete integral Eqs. (52) and (65). The condition number resulting from use of
the incomplete equation becomes very large as k tends to the Wood anomaly; for the complete equation, in contrast, the
condition number remains small and extremely small errors result. A small error increase around the Wood anomaly is
attributed to the algebraic (finite) Green-function convergence rate at Wood anomalies (Theorem 4.4) as opposed to the
super-algebraic convergence (Theorem 3.1) afforded by the smooth-windowing methodology away from Wood anomalies.

6.4. Convergence of forward-maps, solutions and efficiencies

Focusing on integral equations associated with the Dirichlet problem (4)–(6), this section demonstrates the convergence
of the numerical approximation of the integral operator (68) for a given density function μ̃ (the discrete “forward-map”) as
well as the convergence of the solution itself, as the truncation parameter A in Eq. (69) is increased, or, equivalently, as the
truncation parameter N in Eq. (24) grows. The corresponding convergence properties for the Neumann problem are entirely
analogous. For these examples the profile Γ with f = f1 (Eq. (89)) and with H = 1/2 and L = 2π was used, together with
incident waves with incidence angle θ = π/18. In all of the examples considered in this section a sufficiently large number
nI of integration points per period was used so that the approximation errors are dominated by the truncation error that
arises from use of finite values of the parameter N .

Fig. 8 displays errors in the forward map, in the energy balance and in the efficiencies e−1 and e0 for the n = 1 Wood
anomaly frequency k = k1 = (1 − sin θ)−1. As expected, the semi-log error curves are straight lines of various slopes, indi-
cating convergence of various algebraic orders; the convergence orders implicit in these curves are in agreement with those
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Fig. 7. Condition number (left) and energy balance error (right) as functions of the frequency k around the Wood anomaly frequency k−1 ≈ 0.74. Solid (resp.
dashed) curves: quantities resulting from use of the incomplete (resp. complete) Green function G̃q

j (resp. Gq
j ). A small but noticeable error increase around

k = k−1 is attributed to the algebraic (finite) Green-function convergence rate at Wood anomalies as opposed to the super-algebraic convergence afforded
by the smooth-windowing methodology away from Wood anomalies.

Fig. 8. Errors on the forward map, the energy balance and the efficiencies e−1 and e0 as a function of the truncation parameter N for various Green-
functions orders j at the Wood anomaly frequency k = (1 − sin(π/18))−1.

laid down in Section 6.1. Fig. 9, in turn, demonstrates super-algebraic convergence for the non-Wood-anomaly wavenumber
k = 1.4—in agreement, once again, with the theoretical predictions summarized in Section 6.1.

6.5. Computing cost

The unaccelerated Green-function representations and solvers presented in this paper give rise to fast numerical algo-
rithms. As demonstrated in this section, the required computing times to produce full solutions of challenging rough-surface
scattering problems with very high accuracies can be measured in terms of tens to hundreds of milliseconds, both away, at
and around Wood anomalies—highly competitive, in fact, with the performance of other available solvers even for configu-
rations away from Wood anomalies (cf. [4,6,28] and references therein).

In Sections 6.5.1, 6.5.2 and 6.5.3 we present a detailed account of the computing times required by the present solver
for a case study concerning the profile Γ with f = f1 (Eq. (89)), L = 2π and H varying form 0.25 to 1 for configurations
far from Wood anomalies, at Wood anomalies and near Wood anomalies. For the sake of diversity, in this section incidence
angles are taken in Littrow mount of order 
 = −1 (for which the scattered wave of order −1 propagates in the backscat-
tering direction, and under which k = 1.5 is Wood-anomaly wavenumber but k = 1 is not; see Section 6.6 and Remark 6.3).
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Fig. 9. Errors on the forward map, the energy balance and the efficiencies e−1 and e0 as functions of the truncation parameter N—for the non-Wood-
anomaly frequency k = 1.4 and for various Green-functions orders j in the complete integral equation (65). Clearly, super-algebraically fast convergence in
each one of these quantities is observed, in agreement with the theoretical predictions summarized in Section 6.1.

Table 2
Numbers nI (number of discretization points per period) and N (number of periodic intervals contained in the integration domain to the right of the point
x = L

2 ) and corresponding single-core computing times (in seconds) necessary to produce the complete scattering solutions with an energy-balance error
of the order of 10−8 on the basis of the complete j-th order Green function Gq

j for the profile described at the beginning of Section 6.5 with H = 0.25 and
for the wavenumber k = 1.0 (far from the set of Wood anomaly frequencies).

j 0 1 2 3 4

nI 20 20 22 20 22
N 80 80 60 40 40
Time (s) 0.03 0.02 0.03 0.02 0.06

Table 3
Same as Table 2 but for H = 0.5.

j 0 1 2 3 4

nI 30 30 30 30 30
N 60 50 45 50 40
Time (s) 0.07 0.04 0.05 0.08 0.07

Throughout these sections the computing times cited sufficed to produce full scattering solutions with an energy balance
error of the order of 10−8.

Remark 6.2. Significant additional computational acceleration can be induced in the integral equation considered in this sec-
tion by means of an FFT-based equivalent-source methodology [8]—a three-dimensional version of which was outlined and
demonstrated in the preliminary text [11]. The use of acceleration methods lies beyond the scope of this paper, however;
accelerated implementations for two- and three-dimensional configurations will be presented elsewhere.

6.5.1. Computing cost I: wave-numbers away from Wood anomalies
Tables 2, 3 and 4 display the computational times required by our solver to produce a solution with an energy balance

error of the order 10−8 for the wavenumber k = 1.0 (away from the set of Wood anomaly frequencies). We see that in
this case the low order solvers are most efficient. This is easily explained: away from Wood anomalies the super-algebraic
convergence of the windowed Green-function methodology we use is highly effective. The incremental gains in convergence
speed resulting from use higher-order methods does give rise to reductions in the numbers N of periodic intervals necessary
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Table 4
Same as Table 2 but for H = 1.

j 0 1 2 3 4

nI 38 38 42 44 46
N 80 55 50 60 50
Time (s) 0.13 0.08 0.13 0.23 0.36

Table 5
Same as Table 2 (H = 0.25), but for the Wood anomaly frequency k = 1.5.

j 2 3 4 5 6 7 8

nI 26 26 26 26 26 26 26
N 8000 3000 300 60 64 40 36
Time (s) 5.43 0.75 0.23 0.11 0.09 0.08 0.05

Table 6
Same as Table 2 but for H = 0.5 and for the Wood anomaly frequency k = 1.5.

j 3 4 5 6 7 8

nI 34 36 38 38 38 38
N 2600 600 300 200 140 100
Time (s) 1.34 0.55 0.35 0.22 0.26 0.21

Table 7
Same as Table 2 but for H = 1 and for the Wood anomaly frequency k = 1.5.

j 4 5 6 7 8

nI 48 48 50 50 54
N 1200 300 260 140 100
Time (s) 1.27 0.57 0.55 0.48 0.63

Table 8
Same as Table 2 (H = 0.25) but for the frequency k = 1.49 (close to the Wood anomaly frequency k = 1.5).

j 0 1 2 3 4 5 6

nI 26 26 26 26 26 26 26
N 3000 1000 600 350 250 120 100
Time (s) 2.58 0.29 0.16 0.11 0.06 0.05 0.06

to achieve convergence within a given tolerance, but these gains are out-weighted by the additional computing cost required
for evaluation of the relatively large numbers of shifted free-space Green-function values required in the higher-order Green
function.

Clearly, short computing times suffice for evaluation of solution of rather challenging problems. According to Table 4, for
example, an 80-millisecond single-core run (j = 1) suffices to produce a complete scattering solution with a 10−8 energy-
balance error for a problem of scattering by a sinusoidal diffraction grating with height-to-period ratio equal to one (cf. [6]
and references therein).

6.5.2. Computing cost II: a Wood anomaly frequency
Tables 5, 6 and 7 present statistics for the diffraction gratings considered in the previous section, but for the Wood-

anomaly wavenumber k = 1.5. As shown in Table 7, in this case a computational time of less than five-hundred milliseconds
suffices to solve the Wood-anomaly scattering problem for the deep grating H = 1 (height-to-period ratio equal to one) with
an energy-balance error of the order of 10−8.

6.5.3. Computing cost III: frequencies near Wood anomalies
Tables 8, 9 and 10, finally, present statistics for the diffraction gratings considered in the previous sections, but for the

wavenumber k = 1.49, which is near but different from the Wood anomaly value k = 1.5. Interestingly, the computing times
required for this near-anomalous case are actually somewhat larger (albeit by a relatively small factor) than those presented
in the previous section for the actual Wood anomaly. In the present case a computing time of nine-hundred milliseconds is
necessary to solve the near Wood-anomaly scattering problem for the deep grating H = 1 (height-to-period ratio equal to
one) with an energy-balance error of the order of 10−8, as opposed to the five-hundred milliseconds required for the Wood
anomaly case k = 1.5.
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Table 9
Same as Table 2 but for H = 0.5 and for the frequency k = 1.49 (close to the Wood anomaly frequency k = 1.5).

j 0 1 2 3 4 5 6

nI 34 34 34 34 34 34 38
N 2500 1200 800 450 300 220 140
Time (s) 3.35 0.57 0.34 0.26 0.21 0.15 0.24

Table 10
Same as Table 2 but for H = 1 and for the frequency k = 1.49 (close to the Wood anomaly frequency k = 1.5).

j 0 1 2 3 4 5 6

nI 48 48 50 50 54 50 50
N 2500 1800 1400 1200 800 250 250
Time (s) 6.61 1.89 1.30 1.92 1.37 1.22 0.90

Fig. 10. Efficiency e−1 as a function of the spatial frequency k in the Littrow configuration of order −1 under Dirichlet boundary conditions, for the profiles
y = f1(x) with L = 2π and y = f2(x), for various values of H .

6.6. First order Littrow configuration

To conclude our numerical results section we present an application of our solvers to problems involving diffraction
gratings under the classical Littrow mount [42]. Under Littrow mount of order 
 the 
-th diffracted wave, whose efficiency
is e
 , propagates precisely in the backscattering direction. Calling θ
 the angle of propagation of the 
-th wave, the 
-th
order Littrow configuration occurs when sin(θ
) = − sin(θ). Since the propagation angle of the 
-th order scattered mode is
given by α
 = α + 2π


L , in terms of the scattering angle θ
 we have

sin(θ
) = sin(θ) + 2π


kL
, 
 ∈ Z. (91)

The 
-th order Littrow configuration takes place for sin(θ
) = − sin(θ), or, in view of (91), for sin(θ) = −π
/(kL).

Remark 6.3. Under 
-th order Littrow mount (k sin(θ) = −π
/L), the Wood anomaly condition is given by k2 = ((2n −

)π/L)2. In particular, for the 
 = −1 Littrow configurations with periods L = 2π considered in this section, Wood anomalies
occur for k = ±(2n + 1)/2, where n is an arbitrary integer number.

Fig. 10 displays the efficiency e−1 as a function of the frequency k for various gratings of the form y = f1(x) (with L =
2π ) and y = f2(x), where f1 and f2 are given by Eq. (89) for H ∈ {0.1,0.2,0.5,1}. Wood anomaly frequencies are displayed
as vertical dotted lines on the efficiency graphs in Fig. 10 (cf. Remark 6.3). Corresponding results for the Neumann problem
are displayed in Fig. 12. Clearly increasingly more oscillatory efficiency curves result as the grating depth is increased.
Fig. 11 displays corresponding errors: energy-balance errors and “maximum” errors (that is, the maximum departure, over
all efficiencies, of each efficiency from its true value, as evaluated by means of a convergence analysis) for the experiment
considered in Fig. 10(a). Corresponding results for the gratings y = f1(x) and y = f2(x) under Neumann boundary conditions
are presented in Fig. 12; errors similar to those reported in Fig. 11 arise for all of the experiments considered in this section.

7. Conclusions

This paper introduces a new methodology for solution of problems of scattering by periodic surfaces. To our knowledge,
these are the first periodic-Green-function methods ever presented that are applicable even at and around Wood anomaly
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Fig. 11. Energy-balance error and maximum efficiency error for the Littrow configuration of order −1 considered in Fig. 10(a).

Fig. 12. Same as Fig. 10 but with configurations under Neumann boundary conditions.

configurations. The computing costs required by the proposed methods are very small, and, as pointed out in Remark 6.2,
significant additional acceleration can be induced in the proposed methodology by means of an FFT-based equivalent-source
acceleration strategy.
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