期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:348
Optimization via separated representations and the canonical tensor decomposition
Article
Reynolds, Matthew J.1  Beylkin, Gregory2  Doostan, Alireza1 
[1] Univ Colorado, Dept Aerosp Engn Sci, 429 UCB, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Appl Math, UCB 526, Boulder, CO 80309 USA
关键词: Separated representations;    Tensor decompositions;    Canonical tensors;    Global optimization;    Quadratic convergence;   
DOI  :  10.1016/j.jcp.2017.07.012
来源: Elsevier
PDF
【 摘 要 】

We introduce a new, quadratically convergent algorithm for finding maximum absolute value entries of tensors represented in the canonical format. The computational complexity of the algorithm is linear in the dimension of the tensor. We show how to use this algorithm to find global maxima of non-convex multivariate functions in separated form. We demonstrate the performance of the new algorithms on several examples. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2017_07_012.pdf 446KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次