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1. Introduction

Finding global extrema of a multivariate function is an ubiquitous task with many approaches developed to address this
problem (see e.g. [1]). Unfortunately, no existing optimization method can guarantee that the results of optimization are
true global extrema unless restrictive assumptions are placed on the function. Assumptions on smoothness of the function
do not help since it is easy to construct an example of a function with numerous local extrema “hiding” the location of
the true one. While convexity assumptions are helpful for finding global maxima, in practical applications there are many
non-convex functions. For non-convex functions various randomized search strategies have been suggested and used but
none can assure that the results are true global extrema (see, e.g., [2,1]).

We propose a new approach to the problem of finding global extrema of a multivariate function under the assumption
that the function has certain structure, namely, a separated representation with a reasonably small separation rank. While
this assumption limits the complexity of the function, i.e. number of independent degrees of freedom in its representation,
there is no restriction on its convexity. Furthermore, a large number of functions that do not appear to have an obvious
separated representation do in fact possess one, as was observed in [3-5]. In particular, separated representations have been
used recently to address curse of dimensionality issues that occur when solving PDEs with random data in the context of
uncertainty quantification (see, e.g., [6-13]).

We present a surprisingly simple algorithm that uses canonical tensor decompositions (CTDs) for the optimization pro-
cess. A canonical decomposition of a tensor U € RM1*MaxxMa jg of the form,
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where ug-j, j=1,...,d are entries of vectors in RMi and r is the separation rank. Using the CTD format to find entries

of a tensor with the maximum absolute value was first explored in [14] via an analogue of the matrix power method.
Unfortunately, the algorithm in [14] has the same weakness as the matrix power method: its convergence can be very slow,
thus limiting its applicability. Instead of using the power method, we introduce a quadratically convergent algorithm based
on straightforward sequential squaring of tensor entries in order to find entries with the maximum absolute value.

For a tensor with even a moderate number of dimensions finding the maximum absolute value of the entries appears
to be an intractable problem. A brute-force search of a d-directional tensor requires O(Nd) operations, an impractical
computational cost. However, for tensors in CTD format the situation is different since the curse of dimensionality can be
avoided.

Our approach to finding the entries with the maximum absolute value (abbreviated as “the maximum entry” where it
does not cause confusion) is as follows: as in [14], we observe that replacing the maximum entries with 1’s and the rest
of the entries with zeros results in a tensor that has a low separation rank representation (at least in the case where the
number of such extrema is reasonably small). To construct such a tensor, we simply square the entries via the Hadamard
product, normalize the result and repeat these steps a sufficient number of times. The resulting algorithm is quadratically
convergent as we raise the tensor entries to the power 2" after n steps. Since the nominal separation rank of the tensor
grows after each squaring, we use CTD rank reduction algorithms to keep the separation rank at a reasonable level. The
accuracy threshold used in rank reduction algorithms limits the overall algorithm to finding the global maximum within
the introduced accuracy limitation. However, in many practical applications, we can find the true extrema as this accuracy
threshold is user-controlled. These operations are performed with a cost that depends linearly on the dimension d.

The paper is organized as follows. In Section 2 we briefly review separated representations of functions and demonstrate
how they give rise to CTDs. In Section 3 we introduce the quadratically convergent algorithm for finding the maximum entry
of a tensor in CTD format and discuss the selection of tensor norm for this algorithm. In Section 4 we provide a discussion
on using the new algorithm to find the maximum absolute value of continuous functions represented in separated form. In
Section 5 we test both the CTD and separated representation optimization algorithms on numerical examples, including a
parameterized linear elliptic PDE. We provide our conclusions and a discussion of these algorithms in Section 6.

2. Background
2.1. Separated representation of functions and the canonical tensor decomposition

Separated representations of multivariate functions and operators for computing in higher dimensions were introduced
in [3,4]. The separated representation of a function u(xq, x2, ..., Xq) is a natural extension of separation of variables as we
seek an approximation

uGa,..ox) = y_osud () o ud (k) + O (€), (1)

where s; > 0 are referred to as s-values. In this approximation the functions u;l) (xj), j=1,...,d are not fixed in advance
but are optimized in order to achieve the accuracy goal with (ideally) a minimal separation rank r. In (1) we set xj € R
while noting that in general the variables x; may be complex-valued or low dimensional vectors. Importantly, a separated
representation is not a projection onto a subspace, but rather a nonlinear method to track a function in a high-dimensional
space using a small number of parameters. We note that the separation rank indicates just the nominal number of terms in
the representation and is not necessarily minimal.

Any discretization of the univariate functions uﬁl) ( j) in (1) with u(l) uy) (xij), ij=1,...,Mjand j=1,...,d, leads to

a d-dimensional tensor U € RM1>*Ma 3 canonical tensor decomposmon (CTD) of separation rank ry,

U=U(i,... ld)_Zs, ]_[u(’) (2)

where the s-values s} are chosen so that each vector ug) {ul(j)} ; has unit Euclidean norm ||u3.l) Il =1 for all j,I. We
ij=
can also write the CTD of U using vectors u; and the standard vector outer product o,

=3 st ouf
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The CTD has become one of the key tools in the emerging field of numerical multilinear algebra (see, e.g., the reviews
[15-17]). Given CTDs of two tensors U and V of separation ranks r,, and ry, their inner product is defined as

w Ty

=D D sist 1_[ (“E’D’ "5’1/)>’ (3)

I=1I'=1 j=1

where the inner product (-, -) operating on vectors is the standard vector dot product. The Frobenius norm is then defined as
lU|lF = +/{(U, U). Central to our optimization algorithm is the Hadamard, or point-wise, product of two tensors represented
in CTD format. We define this product as,

Ty Ty

UsV=(U#V) (i1 ....in=)_ > s s,,]_[( D).

I=11=1

Common operations involving CTDs, e.g. sum or multiplication, lead to CTDs with separation ranks that may be larger than
necessary for a user-specified accuracy. To keep computations with CTDs manageable, it is crucial to reduce the separation
rank. The separation rank reduction operation for CIDs, here referred to as t¢, is defined as follows: given a tensor U in
CTD format with separation rank ry,

U=Ui,..., ld)_Zs, Hu(')

and user-supplied error €, find a representation

V="V (... ld)_Zsl, l_[v(l)

=1 j=1

with lower separation rank, r, < ry, such that |U—V| < € ||U].

The workhorse algorithm used for 7., i.e. the separation rank reduction problem, is Alternating Least Squares (ALS),
which was introduced originally for data fitting as the PARAFAC (PARAllel FACtor) [18] and the CANDECOMP [19] models.
ALS has been used extensively in data analysis of (mostly) three-way arrays (see e.g. the reviews [15-17] and references
therein). For the experiments in this paper we use exclusively the randomized interpolative CTD tensor decomposition,
CTD-ID [20], for 7 as a faster alternative to ALS.

2.2. Power method for finding the maximum entry of a tensor

The method for finding the maximum entry of a tensor in CTD format in [14] relies on a variation of the matrix power
method adapted to tensors. To see how finding entries with maximum absolute value can be cast as an eigenvalue problem,
we define the low rank tensor Y with 1s at the locations of such entries in U, and set A = max;, ., |U (i1, i2,...,iq)|. The
Hadamard product,

UxY=2.1Y, (4)

reveals the underlying eigenvalue problem. We describe the algorithm of [14] as Algorithm 1 and use it for performance
comparisons.

Algorithm 1

To find the entries with maximum absolute value of a tensor U € RM1*M2>xxMa jn CTD format, given a tolerance € > 0 for the reduction algorithm e,
we define

Yo=( i o )(11 olyo---oly), where 1;=(1,1,..., )T e RM,
and iterate (up to kmax times) as follows:

fork=1,2,..., kmax do

L Q=UxYe1, e ={Yi1,Q)> Zk = Q/ I Qll¢
2. Yi=7e(Zp)

end for

The resulting tensor Y ideally has a low separation rank with zero entries except for a few non-zeros indicating the
location of the extrema. In the case of a single extremum the tensor Y has separation rank 1.
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3. A quadratically convergent algorithm for finding maximum entries of tensors

In order to construct Y from (4), we simply square all entries of the tensor, normalize the result, and repeat these steps
a number of times. Fortunately, the CTD format allows us to square tensor entries using the Hadamard product. These
operations increase the separation rank, so the squaring step is (usually) followed by the application of a rank reduction
algorithm such as ALS, CTD-ID, or their combination.

Algorithm 2

To find the entries with maximum absolute value of a tensor U € RM1xM2x-xMd jn CTD format, given a reduction tolerance € > 0 for the reduction
algorithm 7, we define

Yo =U/ |U||g, and iterate (up to kmax times) as follows:

fork=1,2,..., knax do

1 Qe=VYik1 %Yk
2. Ye=7e (Qu), Yk =Yk/ IIYkllF

end for

Our main point is the new algorithm has a much faster convergence rate. We now compare convergence rates of the
algorithm in [14] and Algorithm 2.

Lemma 3.1. Consider Algorithms 1 and 2 without using the reduction algorithm (i.e. use € = 0 in t. ). Then the convergence rate of
Algorithm 1 is linear and that of Algorithm 2 is quadratic.

Proof. Let us identify the largest (by absolute value) entries of a tensor F as a = |F (j1, j2,..., jq)| and the next largest
entries as b so that the ratio b/a < 1. Entries of the tensor in Algorithm 1 decay to zero at the rate x, = (b/a)™, where m
is the number of iterations. Computing the limit
X b
lim m+1

m—o00 X a

confirms the linear rate. In contrast entries of the tensor in Algorithm 2 decay rapidly at the rate x,; = (b/a)zm. Computing
the limit

. Xm+1
lim +

m—oo Xm

=1

confirms the quadratic rate. O

As a result, the total number of iterations for entries to reach an arbitrarily small finite € is logarithmic,

log (¢) )
log (b) —log(a) )

Since the ratio of entries is expected to be reasonably small for most entries, the tensor will rapidly become sparse after only
a small number of iterations when using the reduction algorithm t.. Since we choose € for the reduction algorithm, we can
assume (at least theoretically) that reduction does change the location of the maxima. In practical applications the feasibility
of using such an € depends on the original ratio b/a. If the ratio b/a is close to 1 and it is not practical to choose € small
enough, then the computed location of the global maximum may be perturbed. However in such cases the algorithm will
find values that are close the global maximum and differ by the amount affected by €. In this sense all current algorithms
for finding global maximum for non-convex functions have the same problem. However, in our case control over € can help
to quantify the difference between computed and actual global maximum. In many practical engineering design problems
involving non-convex optimization such an estimation can be useful.

mslogz(

3.1. Termination conditions for Algorithm 2

We have explored three options to terminate the iteration in Algorithm 2. First, the simplest, is to fix the number of
iterations in advance provided some knowledge of the gap between the entry with the maximum absolute value and the
rest of the entries is available. The second option is to define A, = (Y, U) and terminate the iteration once the rate of its
decrease becomes small, i.e., (Ak — A,<_1) /Ak—1 <8, where § > 0 is a user-supplied parameter. The third option is to observe
the separation rank of Y, and terminate the iteration when it becomes smaller than a fixed, user-selected value. In Section 5
we indicate which termination condition is used in our numerical examples.
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Fig. 1. Comparing the maximum absolute values of entries from rank one terms of a CTD. After 6 iterations Algorithm 2 converges to a rank 1 tensor.

3.2. Selection of tensor norm

Working with tensors, we have a rather limited selection of norms that are computable. The usual norm chosen for work
with tensors is the Frobenius norm which may not be appropriate in all situations where the goal is to find the maximum
absolute value entries. Unfortunately, the Frobenius norm is only weakly sensitive to changes of individual entries. The
alternative s-norm (see [20, Section 4]), i.e., the largest s-value of the rank one separated approximation to the tensor in
CTD format, is better in some situations. In particular, it allows the user to lower the tolerance to below single precision
(within a double precision environment). The improved control over truncation accuracy makes this norm more sensitive
to individual entries of the tensor. We note that while it is straightforward to compute the s-value of a rank one separated
approximation via a convergent iteration, theoretically it is possible that this computed number is not the largest s-value.
However, we have not encountered such a situation using the s-norm in practical problems.

3.3. Numerical demonstration of convergence

We construct an experiment using random tensors, with low separation rank (r = 4 in what follows), in dimension d =6
with M = 32 samples in each direction. The input CTD is formed by adding a rank three CTD and a rank one CTD together.
The rank three CTD is formed using random factors (u;l) in (2)) whose samples were drawn from a uniform distribution on
[.9, 1] (the s-values were set to 1). The rank one CTD has all zeros except for a spike added in at a random location. The
size of this spike is chosen to make the maximum entry have a magnitude of 3.5. For the experiments in this section we
set the reduction tolerance of 7. in Algorithm 2 to € = 10~% and use the Frobenius norm.

We observe that as the iteration proceeds, the maximum entry of one of the CTD terms eventually becomes dominant
relative to the rest. The iteration continues until the rest of the terms are small enough to be eliminated by the separation
rank reduction algorithm t.. This is illustrated in Fig. 1 where we display the maximum entry from all rank one terms in
the CTD for each iteration. Before the first iteration (iteration O in Fig. 1), the gaps between the maxima of the rank one
terms are not large. As we iterate, the maximum entry of one of the rank one terms rapidly separates itself from the others
and, by iteration 6, the reduction algorithm removes all terms except one. This remaining term has an entry 1 corresponding
to the location of the maximum entry of the original tensor and all other entries are 0.

Another interesting case occurs when a tensor has multiple maximum entry candidates, either close to or exactly the
same in magnitude. To explore this case, we construct an experiment similar to the previous one, namely, find the maxi-
mum absolute value of a CTD of dimension d =6 and M = 32 (more precisely, M = 32) samples in each direction. This CTD
is constructed with the same rank 3 random CTD as above, but this time we added in two spikes at random locations so
that there are two maximal spikes of absolute value 3.5. In cases such as this, Algorithm 2 can be run for a predetermined
number of iterations, after which the factors are examined and a subset of candidates can be identified and explicitly veri-
fied. For example, in Fig. 2, we observe that by iteration 6 there are only two candidates for the location of the maximum.
As a warning we note that allowing the code to continue to run many more iterations will leave only one term due to
the finite reduction tolerance € of t in Algorithm 2. Indeed, in Fig. 2 we observe the maximum entries of the two rank
one terms begin to split around iteration number 26, and by iteration 37 only one term remains. This example illustrates a
potential danger of insisting on a single term termination condition.
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Fig. 2. In this example there are two maxima of the same size. The values at these locations converge to 1/ﬁ and the rest of the entries converge to 0.
If allowed to run long enough, the value at one of the locations becomes dominant due to the truncation error of the rank reduction algorithm. The other
location is then eliminated by the algorithm and only one term remains.

4. A discussion on CTD-based global optimization of multivariate functions

We describe an approach using Algorithm 2 for the global optimization of functions that admit low rank separated
representations. We consider two types of problems: first, where the objective function is already in a separated form,
ready to yield a CTD appropriate for use with Algorithm 2. The second, more general problem, is to construct a separated
representation given data or an analytic expression of the function, from which a CTD can then be built.

In the first problem the objective function is already represented in separated form as in (1), and an interpolation scheme
is associated with each direction. Such problems have been subject to growing interest due to the use of CTDs for solving
operator equations, e.g., deterministic or stochastic PDE/ODE systems (see, for example, [3,4,7,13,6,21]), where the solution
is directly approximated in a low rank separated format. The assumption here is that such a representation satisfies certain
convergence criteria, for instance, related to the residual. The practitioner will then be interested in finding the global
extremum of this approximate solution as a proxy to that of the true solution.

In the second problem the goal is to optimize a multivariate function where no separated representation is readily
available. What typically is available is a data set of function values (scattered or on a grid). In such cases our recourse is to
first construct a separated representation of the underlying multivariate objective function and then re-sample it in order to
obtain a CTD of the form (2). The construction of a separated representation given a set of function values can be thought of
as a regression problem (see [5,9]). The algorithms in these papers use function samples to build a separated representation
of form (1). Following [5], an interpolation scheme is set up in each direction and the ALS algorithm is used to reduce the
problem to regression in a single variable. The univariate interpolation scheme may use a variety of possible bases, as well
as nonlinear approximation techniques. Statistical tools, such as cross-validation, may be used to enhance the stability of the
regression problem and avoid over-fitting of the separated representation to the data [9]. Once a separated representation
is constructed, the CTD for finding the global maxima is then obtained to satisfy the local interpolation requirement stated
below. The resulting CTD is then used as input into Algorithm 2 to produce an approximation of the global maxima. An
example of this approach is included in Section 5.3 below.

If the objective function is given analytically, it is preferable to use analytic techniques to approximate the original func-
tion via a separated representation. In such cases, sampling the objective function becomes an important issue when finding
global maxima of a function via Algorithm 2. The key sampling requirement is to ensure that the objective function can be
interpolated at an arbitrary point from its sampled values up to a desired accuracy. This implies that sampling rate must
depend on the local behavior of the function, e.g., the sampling rate is greater near singularities. For example, if a function
has algebraic singularities, an efficient method to interpolate is to use wavelet bases. In such a case we emphasize the im-
portance of using interpolating scaling functions, i.e., scaling functions whose coefficients are function values or are simply
related to those. Since the global maxima are typically searched for in finite domains, the multiresolution basis should also
work well in an interval (or a box in higher dimensions). This leads us to suggest the use of Lagrange interpolating polyno-
mials within an adaptive spatial subdivision framework. We note that rescaled Lagrange interpolating polynomials form an
orthonormal basis on an interval and the spatial subdivision is available as multiwavelet bases (see e.g., [22,23]).

We highlight that finding the maximum entries of a CTD yields only an approximation of the maxima and their locations
for the function. In particular, as in all surrogate-based optimization techniques, the accuracy of the maxima and their loca-
tions identified from CTD cannot be generally guaranteed in the second problem type described above. This is because the
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Fig. 3. Histograms illustrating the number of iterations required for convergence to a rank one CTD by the power method optimization (hatched pattern)
and the squaring method optimization (solid gray).

construction of surrogates, including CTDs, from function values generally relies on minimizing some norm of the mismatch
between the surrogate and the function at sample points, without any consideration or guarantee on the value and location
of the surrogate extrema. Due to the interpolation requirements stated above the constructed CTDs are high-quality approx-
imations so that, if needed, a local optimization algorithm can be used as a last step for finding the true global maxima.
However, if the location of the true maxima is outside the local search domain, no improvement can be achieved. Such
approaches are among widely-used methods to improve the quality of surrogate-based optimization with relatively smaller
number of original function evaluations, see, e.g., [24-28]. Since in this case we use local optimization, it is preferable to
oversample the CTD representation of a function, i.e. to use large M;'s in (2). This will not result in a prohibitive cost as
the rank reduction algorithms, e.g. ALS, that operate on CTDs scale linearly with respect to the number of samples in each
direction [4]. However, the total number of samples needed to satisfy the local interpolation requirement may be large and,
thus, additional steps to accelerate the reduction algorithm t. in Algorithm 2 may be required. One such technique consists
of using the QR factorization as explained in [20, Section 2.4].

An example of applying analytic techniques to put a function in separated form and subsequently using Algorithm 2 to
optimize the separated function is provided in Section 5.2.

5. Numerical examples
5.1. Comparison with power method algorithm from Section 2.2

To test Algorithm 2, we construct tensors from random factors and find the entries with the largest absolute value. For
these examples we select dimension d = 8 and set M = 32 samples in each direction. The test CTDs are constructed by
adding rank four and rank one CTDs together. The rank four CTDs are composed of random factors (vectors ug.l) in (2))
whose entries are drawn from the uniform distribution on [.9, 1] and the corresponding s-values are set to 1. The rank one
CTDs contain all zeros except for a magnitude 4 spike added in at a random location. The CTDs in these examples have
a unique maximum entry, and we chose to terminate the algorithm when the output CTD reaches separation rank one.
We run tests for both Algorithm 2 and Algorithm 1, using for the rank reduction operation 7. the CTD-ID algorithm with
accuracy threshold € = 10~% in the s-norm.

A histogram displaying the required number of iterations to converge for 500 individual tests is shown in Fig. 3. While
both algorithms find the correct maximum location in all tests, Algorithm 2 outperforms Algorithm 1 in terms of the number
of iterations required. While Algorithm 2 requires much fewer iterations than the power method for the same problem,
a lingering concern may be that the squaring process in Algorithm 2 requires the reduction of CTDs with much larger
separation ranks. In Fig. 4 we show histograms of computation times. We observe that despite reducing larger separation
rank CTDs, the computation times using Algorithm 2 are significantly smaller. These computation times are for our MATLAB
code running on individual cores of a Intel Xeon 2.40 GHz processor.

5.2. Optimization example

As an example of applying analytic techniques to put a function in separated form for the purpose of optimization, we
consider Ackley’s test function [29], commonly used for testing global optimization algorithms,

p(1yd 2)? d
ux)=ae b(d 2iz1 Xi) + 6% >ie cos(cx,-), (5)

where d is the number of dimensions and a, b, and ¢ are parameters. For our tests we set d =10, a =20, b = 0.2, and
¢ = 2m. We choose this test function for two reasons: first, it has many local maxima, thus a local method without a good
initial guess may not find the correct maximum. Second, one of the terms is not in separated form, hence we must construct
a separated approximation of the function first.

The true maximum of (5) occurs at x =0 with a value of u (0) =a + e. The first term in (5) is radially symmetric which
we approximate with a linear combination of Gaussians using the approximation of e from [30, Section 2.2],
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hh & b2 1
Ge (X) = Weri j_zoexp (—4—desf —x%e% + ES’) , 6)

where $; = Sstqre + jh, and h, Sseare, and R are parameters chosen such that given €, > 0,

_b
Ge(x)—e Vd

X

<ec (7)

for 0 <8 < x < co. We arrive at the approximation of the first term in (5),

b(lzd X2)1/2 R d
e \d~i=17 —ijl_[exp(—xizesf) <e€g (8)
j=0 =1
. _ _hb b2 osi 1.
where w]_ﬁexp(—mej—i—js]).

To correctly sample (5), we first consider two terms of the function separately, the radially-symmetric exponential term,
and the exponential cosine term which is already in separated form, exp (% Z?:] cos (cxi)) = ]_[?:1 exp (% cos (cxi)). These

terms require different sampling strategies. The sampling rate of the radially-symmetric exponential term near the origin
should be significantly higher than away from it. On the other hand, uniform sampling is sufficient for the exponential
cosine term. We briefly discuss the combined sampling of these terms to satisfy both requirements.

To sample the radially-symmetric exponential term in (5), we use the expansion by Gaussians (6) as a guide. We choose
10 equally-spaced points centered at zero and sample the Gaussian e~ For each Gaussian in (6), we scale these points by
the factor e%i/2 in order to consistently sample each Gaussian independent of its scale. Since (6) includes a large number of
rapidly decaying Gaussians, too many of the resulting samples will concentrate near the origin. Therefore, we select a subset
as follows: first, we keep all samples from the sharpest Gaussian, xo;, [ =1, ..., 10. We then take the samples from second
sharpest Gaussian and keep only those outside the range the previous samples, i.e., we keep X1, such that |xy,;| > max; |Xg,
m=1,...,10. Repeating this process for all terms j=0,1,..., R in expansion (6) yields samples for the radially-symmetric
exponential term in (5).

We oversample the exponential cosine term using 16 samples per oscillation. Notice that this sampling strategy is not
sufficient for the radially-symmetric exponential term in (5) (and vice-versa). To combine these samples, we first find the
radius where the sampling rate of the radially-symmetric exponential term in (5) drops below the sampling rate chosen to
sample the exponential cosine term. We then remove all samples whose coordinates are greater in absolute value than the
radius, and replace them with samples at the chosen rate of 16 samples per oscillation. The resulting set of samples consists
of M = 1080 points for each direction j=1,..., 10.

Using expansion (6) leads to a 77 term CTD representation for the chosen accuracy ec = 108 and parameter § =3-107°
in (7). An initial reduction of this CTD using the CTD-ID algorithm with accuracy threshold € = 1078 in the Frobenius norm
produces a CTD with separation rank 11 representing the function u (x). We use this CTD as an input into Algorithm 2,
yielding a rank one solution after 24 iterations. We set the reduction tolerance in Algorithm 2 for this experiment to
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€ =107% and find the maximum entry of the tensor located at a distance 2.13 x 103 away from the function’s true
maximum location, the origin. Using the output as the initial guess in a local, gradient-free, optimization algorithm (in our
case a compass search, see e.g. [31]) yields the maximum value with relative error of 1.03 x 10~/ located at a distance
1.84 x 1075 away from the origin.

5.3. PDE optimization example

As an example of constructing a separated representation from function evaluations for the purpose of optimization, we
consider the problem of finding the maximum of the solution u(x, z) to the parameterized linear elliptic PDE

—V-(a(x,2)Vux,z)) =1, xeD, (9)
ux,z)=0, xeaD,

defined on the unit square D = (0,1) x (0, 1) with boundary dD. This problem represents a generic model for diffusive
processes and is widely used to study the effect of parameter uncertainty in applications such as subsurface flows, heat
conduction, and chemical transport.

The diffusion coefficient a(x, z) is parametric and following [32] is modeled by

d
a(x.2) =ao+ 00 Y _ /G X)z. (10)
k=1
where z = (z1,...,24) and the parameters z; are distributed over the interval [—1, 1], and we choose ap = 0.1, o, =0.01,

and d = 20. In (10), {g“k};z:] are the d largest eigenvalues associated with {gok}ﬁ:]. the L, (D)-orthonormalized eigenfunctions
of the kernel Cyq(X1,X2) = exp (—||X1 — X2||1/lc), where I is set to I =2/3. Given the choices of parameters ag, og, d, and
I, the model in (10) leads to strictly positive realizations of a(x, z).

The objective in this example is to approximate u(x,z) at x* = (0.4839, 0.4839) as a function of z and find the max-
imum value of u(x*,z) to study the worst-case scenario response of the system in the presence of parameter variations.
In the following experiments we take two different approaches to optimizing u(x*, z): The first approach is to construct a
separated representation of u(x*, z), evaluate it on a tensor grid yielding a CTD, and find the maximum via Algorithm 2. For
comparison, we also use a genetic algorithm, a representative approach to finding the maximum of non-convex functions.
Both methods require evaluation of u(x*,z) (at a fixed z € [—1, 1]?°) by solving (9). In this example we use a finite element
solver with a triangular mesh of uniform size h =1/32.

In our approach, we construct a separated representation by first computing 600 realizations of u(x*,z) via solution
of (9). Using the resulting data points, we estimate u(x*,z) in separated form using the method from [5,9]. The resulting
function has separation rank r = 5, where the factors uﬁD (zj) in (1) are represented in a Legendre basis of polynomials of
degree at most three. We then validate the separated representation by computing 3400 additional samples of u(x*, z); the
relative RMS validation error is 3.256 x 10~4, which is within the accuracy of the finite element solver.

Using the separated representation, we construct a CTD with 32 samples equispaced in [—1, 1] for each direction. We
then use Algorithm 2 (with an ALS tolerance of € = 10~3 to keep the separation rank relatively low) to find the maximum
entry of the CTD. As a baseline for comparing the output from Algorithm 2, we use the genetic algorithm from the MATLAB
Optimization Toolbox with the recommended settings.

To compare the performance of Algorithm 2 with the genetic algorithm, we conducted 500 tests of each approach since
both algorithms have random components. Algorithm 2 uses random rank updates during the ALS reduction procedure,
while the genetic algorithm uses different initial populations for each test. The largest maximum found by Algorithm 2 in the
500 tests was 8.744 x 101, with mean 8.731 x 10~ and standard deviation 5.7 x 10~4. For comparison, the largest maxima
found by the genetic algorithm in these tests was 8.750 x 10~!, with mean 8.747 x 10~! and standard deviation 3.6 x 1074,
Taking into account that the accuracy of solving (9) and the RMS validation error of the separated representation are both
of the same order as the computed standard deviations, the results obtained from the two algorithms are consistent.

On the other hand, an important difference between the two methods is the number of function evaluations required to
find the maximum, in our case solving (9) once for each function evaluation. While in the 500 experiments described above
the genetic algorithm required on average 4.419 x 10* solutions of (9) to obtain the maximum, the separated representation
of u(x*, z) was constructed using only 600 solutions of (9). Algorithm 2 required on average of 34 iterations to compute the
maximum, whereas the largest number of iterations required was 43.

It is well known that genetic algorithms require a large number of function evaluations. In practical applications comput-
ing a large number of solutions of PDEs may be impractical. In such applications it is quite common to construct so-called
surrogate models to reduce computational costs (see, e.g. [33]). For example, one may use a separated representation as such
a surrogate, and then optimize via genetic algorithm. However, even with this modification, the advantage of Algorithm 2
over genetic algorithms (and other global search methods) is linear scaling of its complexity with the dimension d.
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6. Discussion and conclusions

Entries of a tensor in CTD format with the largest absolute value can be reliably identified by the new quadratically
convergent algorithm, Algorithm 2. This algorithm, in turn, can be used for global optimization of multivariate functions
that admit separated representations. Unlike algorithms based on random search strategies (see e.g. [1]), our approach
allows the user to estimate the potential error of the result. The computational cost of Algorithm 2 is dominated by the cost
of reducing the separation ranks of intermediate CTDs, not the dimension of the optimization problem. If ALS is used to
reduce the separation rank and d is the dimension, r is the maximum separation rank (after reductions) during the iteration,
and M is the maximum number of components in each direction, then the computational cost of each rank reduction step
can be estimated as O (r4 -M-d- Niter), where Njr is the number of iterations required by the ALS algorithm to converge.
The computational cost of the CTD-ID algorithm is estimated as O (r3 -M - d) and, if it is used instead of ALS, the reduction
step is faster by a factor of O (- Njr) [20]. We note that, while linear in dimension, Algorithm 2 may require significant
computational resources due to the cubic (or quartic for ALS) dependence on the separation rank r.

Finally, we note that the applicability of our approach to global optimization extends beyond the use of separated repre-
sentations of multivariate functions or tensors in CTD format. In fact, any structural representation of a multivariate function
that allows rapid computation of the Hadamard product of corresponding tensors and has an associated algorithm for re-
ducing the complexity of the representation should work in a manner similar to Algorithm 2.
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