期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:233
A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations
Article
Rhebergen, Sander1  Cockburn, Bernardo1  van der Vegt, Jaap J. W.2 
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
关键词: Space-time discontinuous Galerkin method;    Incompressible Navier-Stokes equations;    Deforming domains;   
DOI  :  10.1016/j.jcp.2012.08.052
来源: Elsevier
PDF
【 摘 要 】

We introduce a space-time discontinuous Galerkin (DG) finite element method for the incompressible Navier-Stokes equations. Our formulation can be made arbitrarily high-order accurate in both space and time and can be directly applied to deforming domains. Different stabilizing approaches are discussed which ensure stability of the method. A numerical study is performed to compare the effect of the stabilizing approaches, to show the method's robustness on deforming domains and to investigate the behavior of the convergence rates of the solution. Recently we introduced a space-time hybridizable DG (HDG) method for incompressible flows [S. Rhebergen, B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys. 231 (2012) 4185-4204]. We will compare numerical results of the space-time DG and space-time HDG methods. This constitutes the first comparison between DG and HDG methods. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2012_08_052.pdf 1134KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次