期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:486
Approximation of the multi-dimensional incompressible Navier-Stokes equations by discrete-velocity vector-BGK models
Article
Zhao, Jin1  Zhang, Zhimin1  Yong, Wen-An2 
[1] Beijing Computat Sci Res Ctr, Div Appl & Computat Math, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词: Vector-BGK model;    Incompressible Navier-Stokes equations;    Maxwell iteration;    Energy estimates;    Convergence-stability lemma;   
DOI  :  10.1016/j.jmaa.2020.123901
来源: Elsevier
PDF
【 摘 要 】

In this paper, we prove that a class of discrete-velocity vector-BGK models can be used as approximations to the multi-dimensional incompressible Navier-Stokes equations on the torus. The proof relies crucially on two constructions: a new symmetrizer and approximate solutions. The former renders us a natural setting for energy estimates and the latter is motivated by the Maxwell iteration. Simple and concise stability conditions are also obtained for a number of concrete 2- or 3-dimensional BGK models. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_123901.pdf 389KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次