期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:229
On stable parametric finite element methods for the Stefan problem and the Mullins-Sekerka problem with applications to dendritic growth
Article
Barrett, John W.1  Garcke, Harald2  Nuernberg, Robert1 
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Regensburg, NWF 1, D-93040 Regensburg, Germany
关键词: Stefan problem;    Mullins-Sekerka problem;    Surface tension;    Anisotropy;    Kinetic undercooling;    Gibbs-Thomson law;    Dendritic growth;    Snow crystal growth;    Parametric finite elements;   
DOI  :  10.1016/j.jcp.2010.04.039
来源: Elsevier
PDF
【 摘 要 】

We introduce a parametric finite element approximation for the Stefan problem with the Gibbs-Thomson law and kinetic undercooling, which mimics the underlying energy structure of the problem. The proposed method is also applicable to certain quasi-stationary variants, such as the Mullins-Sekerka problem. In addition, fully anisotropic energies are easily handled. The approximation has good mesh properties, leading to a well-conditioned discretization, even in three space dimensions. Several numerical computations, including for dendritic growth and for snow crystal growth, are presented. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2010_04_039.pdf 4448KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次