期刊论文详细信息
JOURNAL OF COMPUTATIONAL PHYSICS 卷:305
A low-rank approach to the computation of path integrals
Article
Litsarev, Mikhail S.1  Oseledets, Ivan V.1,2 
[1] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Moscow 143026, Russia
[2] Russian Acad Sci, Inst Numer Math, Moscow 119333, Russia
关键词: Low-rank approximation;    Feynman-Kac formula;    Path integral;    Multidimensional integration;    Skeleton approximation;    Convolution;   
DOI  :  10.1016/j.jcp.2015.11.009
来源: Elsevier
PDF
【 摘 要 】

We present a method for solving the reaction-diffusion equation with general potential in free space. It is based on the approximation of the Feynman-Kac formula by a sequence of convolutions on sequentially diminishing grids. For computation of the convolutions we propose a fast algorithm based on the low-rank approximation of the Hankel matrices. The algorithm has complexity of O(nrMlogM + nr(2)M) flops and requires O(Mr) floating-point numbers in memory, where n is the dimension of the integral, r << n, and M is the mesh size in one dimension. The presented technique can be generalized to the higher-order diffusion processes. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jcp_2015_11_009.pdf 803KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次