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We present a method for solving the reaction–diffusion equation with general potential in 
free space. It is based on the approximation of the Feynman–Kac formula by a sequence 
of convolutions on sequentially diminishing grids. For computation of the convolutions we 
propose a fast algorithm based on the low-rank approximation of the Hankel matrices. The 
algorithm has complexity of O(nrM log M +nr2 M) flops and requires O(Mr) floating-point 
numbers in memory, where n is the dimension of the integral, r � n, and M is the mesh 
size in one dimension. The presented technique can be generalized to the higher-order 
diffusion processes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Path integrals [1–3] play a dominant role in description of a wide range of problems in physics and mathematics. 
They are a universal and powerful tool for condensed matter and high-energy physics, theory of stochastic processes and 
parabolic differential equations, financial mathematics, quantum chemistry and many others. Different theoretical and nu-
merical approaches have been developed for their computation, such as the perturbation theory [4], the stationary phase 
approximation [5,6], the functional renormalization group [7,8], various Monte Carlo [9] and sparse grids methods [10,11]. 
The interested reader can find particular details in the original reviews and books [12–14].

In this paper we focus on the one-dimensional reaction–diffusion equation with initial distribution f (x) : R →R
+ and a 

constant diffusion coefficient σ

⎧⎨
⎩

∂

∂t
u(x, t) = σ

∂2

∂x2
u(x, t) − V (x, t)u(x, t),

u(x,0) = f (x)
t ∈ [0, T ], x ∈R. (1)

This equation may be treated in terms of a Brownian particle motion [15–17], where the solution u(x, t) : R × [0, T ] → R
+

is the density distribution of the particles. The potential (or the dissipation rate) V (x, t) is bounded from below. We do not 
consider the drift term ρ ∂

∂x u(x, t) because it can be easily excluded by a substitution u(x, t) → ũ(x, t)e−ρx [18].
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The solution of (1) can be expressed by the Feynman–Kac formula [18–20]

u(x, T ) =
∫

C{x,0;T }
f (ξ(T ))e− ∫ T

0 V (ξ(τ ),T −τ )dτDξ , (2)

where the integration is done over the set C{x,0; T } of all continuous paths ξ(T ) : [0, T ] → R from the Banach space 
�([0, T ], R) starting at ξ(0) = x and stopping at arbitrary endpoints at time T . Dξ is the Wiener measure, and ξ(t) is the 
Wiener process [21,22]. One of the advantages of the formulation (2) is that it can be directly applied for the unbounded 
domain without any additional (artificial) boundary conditions.

Path integral (2) corresponding to the Wiener process is typically approximated by a finite multidimensional integral with 
the Gaussian measure (details are given in Section 2.1). The main drawback is that this integral is a high-dimensional one 
and its computation requires a special treatment. Several approaches have been developed to compute the multidimensional 
integrals efficiently. The sparse grid method [23,24] has been applied to the computation of path integrals in [25], but only 
for dimensions up to ∼ 100, which is not enough in some applications. The main disadvantage of the Monte Carlo simulation 
is that it does not allow to achieve a high accuracy [26,27] for some cases (highly oscillatory functions, functions of sum of 
all arguments).

The multidimensional integrand can be represented numerically as a multidimensional array (a tensor), which contains 
values of a multivariate function on a fine uniform grid. For the last decades several approaches have been developed to 
efficiently work with tensors. They are based on the idea of separation of variables [28–31] firstly introduced in [32,33]. It 
allows to present a tensor in the low-rank or low-parametric format [34–36], where the number of parameters used for 
the approximation is almost linear (with respect to dimensionality). To construct such decompositions numerically the very 
efficient algorithms have been developed recently: two-dimensional incomplete cross approximation1 for the skeleton decom-
position, three-dimensional cross approximation [37] for the Tucker format [38–41] in 3D, tt-cross [42] approximation for 
the tensor train decomposition [43,44], which can be also considered as a particular case of the hierarchical Tucker format 
[45–47] for higher dimensional case. For certain classes of functions commonly used in the computational physics (mul-
tiparticle Schrödinger operator [48–53], functions of a discrete elliptic operator [54–59], Yukawa, Helmholtz and Newton 
potentials [60–63], etc.) there exist low-parametric representations in separated formats and explicit algorithms [64,65] to 
obtain and effectively work with them (especially quantized tensor train (QTT) format [66–73]). In many cases it is very effec-
tive to compute the multidimensional integrals [74] using separated representations [75], particularly for multidimensional 
convolutions [76–79] and highly oscillatory functions [80].

Our approach presented here is based on the low-rank approximation of matrices used in an essentially different manner. 
We formulate the Feynman–Kac formula as an iterative sequence of convolutions defined on grids of diminishing sizes. This 
is done in Section 3.2. To reduce the complexity of this computation, in Section 3.3 we find a low-rank basis set by applying 
the cross approximation (see Appendix A) to a matrix constructed from the values of a one-dimensional function on a very 
large grid. That gives reduction of computational time and memory requirements, resulting in fast and efficient algorithm 
presented in Section 3.4. The numerical examples are considered in Section 4. The most interesting part is that we are able 
to treat non-periodic potentials without any artificial boundary conditions (Section 4.3).

2. Problem statement

2.1. Time discretization

Equation (2) corresponds to the Wiener process. A standard way to discretize the path integral is to break the time range 
[0, T ] into n intervals by points

τk = k · δt, 0 ≤ k ≤ n, n : τn = T .

The average path of a Brownian particle ξ(τk) after k steps is defined as

ξ (k) = ξ(τk) = x + ξ1 + ξ2 + . . . + ξk,

where every random step ξi , 1 ≤ i ≤ k, is independently taken from a normal distribution N (0, 2σδt) with zero mean and 
variance equal to 2σδt . By definition, ξ (0) = x.

Application of a suitable quadrature rule on the uniform grid (i.e., trapezoidal or Simpson rules) with the weights {wi}n
i=0

to the time integration in (2) gives

	(T ) =
T∫

0

V (ξ(τ ), T − τ )dτ ≈
n∑

i=0

wi V (n)
i δt, V (n)

i ≡ V (ξ(τi), τn−i), (3)

1 Because the low-rank representation of large matrices based on the adaptive cross approximation is directly related to the manuscript we summarize 
the basics of the method in Appendix A.
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and transforms the exponential factor to the approximate expression

e−	(T ) ≈
n∏

i=0

e−wi V (n)
i δt .

The Wiener measure, in turn, transforms to the ordinary n-dimensional measure

D(n)
ξ =

(
λ

π

) n
2

n∏
k=1

e−λξ2
k dξk, λ = 1

4σδt
,

and the problem reduces to an n-dimensional integral over the Cartesian coordinate space. Thus, we can approximate the 
exact solution (2) by u(n)(x, t)

u(x, T ) = lim
n→∞ u(n)(x, T )

written in the following compact form

u(n)(x, T ) =
∞∫

−∞
D(n)

ξ f
(
ξ (n)

) n∏
i=0

e−wi V (n)
i δt . (4)

The integration sign here denotes an n-dimensional integration over the particle steps ξk , and V (n)
i is defined in (3). The 

convergence criterion in terms of n for the sequence (4) is discussed and proven in [17, p. 33]. The limit of (4) exists if it is 
a Cauchy sequence.

Our goal is to compute the integral (4) numerically in an efficient way.

3. Computational technique

3.1. Notations

In this paper vectors (written in columns) are denoted by boldface lowercase letters, e.g., a, matrices are denoted by 
boldface capital letters, e.g., A. The i-th element of a vector a is denoted by ai , the element (i, j) of a matrix A is denoted 
by Aij . A set of vectors am , m0 ≤ m ≤ m1 is denoted by {am}m1

m=m0 , and the i-th element of a vector am is denoted by ami .

Definition 1. Let a ∈ R
k and b ∈ R

m be vectors and k ≥ m. We say that a vector c ∈ R
m+k−1 is a convolution of two ordered 

vectors a and b and write

c = a ◦ b,

if c has the following components

ci =
m−1∑
j=0

ai+ jb j, ai = 0,∀i : {i | i < 0 ∨ i >= k}.

The computation of the convolution can be naturally carried out as a multiplication by the Hankel matrix.

Definition 2. We say that the Hankel matrix A ∈R
k×k is generated by row aT ∈R

k and column b ∈R
k−1, and denote this by

A = [aT ,b]H ,

if

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 · · · ak−2 ak−1
a1 a2 a3 · · · ak−1 b0
a2 a3 a4 · · · b0 b1
...

...
...

. . .
...

...

ak−2 ak−1 b0 · · · bk−4 bk−3
ak−1 b0 b1 · · · bk−3 bk−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

aT = (
a0,a1,a2, . . . ,ak−2,ak−1

)
, b = (

b0,b1,b2, . . . ,bk−2
)T

. (5)
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This compact notation will be used to compute convolutions (when they are written as a Hankel matrix-vector products). 
As it can be directly verified, ∀α ∈ R

α · A = [α · aT ,α · b]H . (6)

Definition 3. For two vectors a and b from (5) for the case ai = bi , ∀i : 0 ≤ i < k − 1, we will also write

a =
(

b
ak−1

)
. (7)

This notation will be used when vector b is a subvector of a.

3.2. Multidimensional integration via the sequence of one-dimensional convolutions

Multidimensional integral (4) can be represented in terms of an iterative sequence of one-dimensional convolutions. 
Indeed, for a one-dimensional function F (n)

k (x), such that

F (n)

k (x) =
√

λ

π

∞∫
−∞



(n)

k+1(x + ξ) e−λξ2
dξ, x ∈R, k = n,n − 1, . . . ,1, (8)

with



(n)

k+1(x) = F (n)

k+1(x) e−wk V (x,τn−k)δt, (9)

and the initial condition

F (n)
n+1(x) = f (x), (10)

the solution (4) reads

u(n)(x, T ) = F (n)
1 (x) e−w0 V (x,T ) δt . (11)

The iteration starts from k = n and goes down to k = 1. Since the function 
(n)

k (x) is bounded and the convolution (8)
contains the exponentially decaying Gaussian, the integral has finite lower and upper bounds. Consider

F (n)

k (x) ≈ F̃ (n)

k (x) =
√

λ

π

ax−hx∫
−ax


̃
(n)

k+1(x + ξ) e−λξ2
dξ. (12)

We suppose that the product 
(n)

k+1(x + ξ) e−λξ2
rapidly decays, so that for ax large enough, we can approximate the integral 

F (n)

k (x) in (8) by F̃ (n)

k (x) and assume that this approximation has an error ε in some norm∥∥∥F (n)

k (x) − F̃ (n)

k (x)
∥∥∥< ε.

This approximation has an important drawback: as soon as F (n)
1 (x) has to be computed on the semi-open interval [−ax, ax), 

the domain of F (n)
n (x) should be taken larger, i.e. [−nax, nax) for n steps, because of the convolution structure of the inte-

gral (12). Indeed, if we suppose, that the function F (n)

k (x) is computed on the uniform mesh

x(k)
i = −kax + ihx, 0 ≤ i < kM, hx = ax/Nx, M = 2Nx, (13)

and the integration mesh is chosen to be nested in (13) with the same step hx

ξ j = −ax + jhx, 0 ≤ j < M, (14)

then the function F (n)

k+1(x) is defined on the mesh

x(k+1)
i = −(k + 1)ax + ihx, 0 ≤ i < (k + 1)M, (15)

and

x(k+1)
i+ j = x(k)

i + ξ j. (16)

The last equality follows from definitions (13) and (14). This is illustrated in Fig. 1.
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Fig. 1. A correspondence of meshes for two nearest iterations x(k+1)
i+ j = x(k)

i + ξ j from equation (16) for k = 7. Blue filled circles separate the ranges cor-
responding to different steps m, 1 ≤ m ≤ k in time [−max, max). Ticks on the axes label the mesh points. Violet curved lines show correspondence (16)
between the two meshes for nearest iterations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

The integral (12) can be calculated for every fixed x(k)
i of the mesh (13) as the quadrature sum with the weights {μ j}M−1

j=0

F̃ (n)

k

(
x(k)

i

)
≈

M−1∑
j=0

μ j
̃
(n)

k+1

(
x(k+1)

i+ j

)
p(λ, ξ j), p(λ, ξ) =

√
λ

π
e−λξ2

(17)


̃
(n)

k+1

(
x(k+1)

i

)
= F̃ (n)

k+1

(
x(k+1)

i

)
e−wk V (x(k+1)

i ,τn−k)δt (18)

The complexity of the computation of F̃ (n)

k

(
x(k)

i

)
for all i is O(kN2

x ) flops. It can be reduced to O(kNx log Nx) by applying 

the Fast Fourier transform (FFT) for convolution (17). Full computation of F̃ (n)
1

(
x(1)

i

)
costs O(n2 Nx log Nx) operations and 

O(nNx) floating-point numbers. This complexity becomes prohibitive for large n (i.e., for small time steps), but can be 
reduced. Below we present a fast approximate method for the calculation of F̃ (n)

1

(
x(1)

i

)
in O(nrNx log Nx + nr2 Nx) flops and 

O(rNx) memory cost with r � n, by applying low-rank decompositions.

3.3. Low-rank basis set for the convolution array

In this section we provide a theoretical justification for our approach. Consider a sequence of matrices A(k) ∈ R
kM×M

corresponding to the iterative process (17) and constructed in the following way

A(k)
i j = a(k)

i+ j ≡ 
̃
(n)

k

(
x(k)

i+ j

)
, 0 ≤ j < M, 0 ≤ i < kM, (19)

where k is the iteration number.
Let us now consider iteration (17) at the step k = k0 and for simplicity omit the index k0 + 1 in the matrix and mesh 

notations (19). Let us also denote the sum (17) for xi taken from the grid (13) by si = F̃ (n)

k0
(xi) and set p j ≡ μ j p(λ, ξ j). Then

si =
M−1∑
j=0

Aij p j ⇔ s = Ap. (20)

The equality (20) establishes the recurrence relation between iterations at the step k (the right-hand side) and the step k −1
(the left-hand side) according to (17) and (18), see Fig. 2.

The matrix A is a Hankel matrix, as follows from definition (19), and consists of k square blocks Hm , 0 ≤ m < k, such 
that

AT = (
H0,H1 . . . Hk−1

)
. (21)

Here, every block Hm is a Hankel matrix as well generated by the upper row lT
m and the right column rm+1 correspondingly:

Hm =
[

lT
m, rm+1

]

H
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Fig. 2. Transition between two neighbour iterations is illustrated. The left-hand-side matrix A is multiplied by vector p in a resulting vector s according 
to (20). Explicit structure of matrix blocks Hm in (21) and vector blocks hm in (24) is shown. Then entries of vector s are multiplied by corresponding 
factor e−wk V (xi ,τn−k)δt to produce the next iteration step (9). From a new vector a′ there formed a new matrix A′ according to (19). The last point from the 
previous iteration is not needed and is thrown out. Then the steps repeat for the next iteration.

(the notation [a, b]H is introduced in Section 3.1, Definition 2), where

lT
m = (ai0 ,ai0+1, . . . ,ai0+M−2,ai0+M−1),

rT
m = (ai0 ,ai0+1, . . . ,ai0+M−2),

i0 = m · M, 0 ≤ m < k, (22)

by the definition, see Fig. 2. It can also be represented as a sum of two anti-triangular2 Hankel matrices

Hm = Lm + Rm, Lm =
[

lT
m·M ,0

]
H

, Rm =
[

0T , r(m+1)·M
]

H
, (23)

where the upper-left Lm has nonzero anti-diagonal and the bottom-right Rm has zero anti-diagonal according to (22).
Equation (20) may be rewritten in the block form (see again Fig. 2)

hm = Hmp, hT
m = (sm·M , sm·M+1 . . . sm·M+M−1) . (24)

Here every block Hm is multiplied by the same vector p. The number of matrix-vector multiplications can be reduced, if 
the dimension d of the linear span H = {Hm}k−1

m=0 is less than k. Before estimation of the dimension we formulate some 
auxiliary lemmas (proven in the Appendix C).

Lemma 1. Let {ui}r1−1
i=0 be a basis set of span {lm}k−1

m=0 , r1 ≤ k, and let matrix Ui = [
uT

i ,0
]

H . Then {Ui}r1−1
i=0 is a basis set of span 

{Lm}k−1
m=0 from (23).

Lemma 2. Let {wi}r2−1
i=0 be a basis set of span {rm}k

m=1 , r2 ≤ k, and let matrix Wi = [
0T ,wi

]
H . Then {Wi}r2−1

i=0 is a basis set of span 
{Rm}k−1

m=0 from (23).

Lemma 3. Let {ui}r1−1
i=0 be a basis set of span {lm}k

m=0 , such that uT
i = (wT

i , ui,(M−1)) according to (7). Then {wi}r1−1
i=0 is a basis set of 

span {rm}k
m=1 .

Let us define a basis set {Q}2r−1
i=0 as follows

Qi =
{

Ui, 0 ≤ i < r

Wi−r, r ≤ i < 2r
(25)

An obvious corollary of the previous lemma is the following theorem.

2 By anti-triangular matrix we call a matrix which is triangular with respect to the anti-diagonal of the matrix.
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Theorem 1. The dimension of the linear span of matrices {Hm}k−1
m=0 is equal to 2r. Moreover, it is contained in the linear span of the 

matrices {Qi}2r−1
i=0 defined in (25).

Proof. The matrix Hm can be written as a sum (23), Hm = Lm + Rm . According to Lemma 1, the set {Ui}r−1
i=0 is a basis set of 

the span {Lm}k−1
m=0. By Lemma 3, {wi}r−1

i=0 is a basis set of the span {rm}r−1
m=0, and by Lemma 2, {W}r−1

i=0 is a basis set of {R}k−1
m=0. 

The subspaces {Ui}r−1
i=0 and {Wi}r−1

i=0 contain only zero matrix in common, so the dimension of the basis is 2r. �
Lemma 4. Let {ui}r−1

i=0 be a basis set of span {lm}k
m=0 . Then for basis matrices {Qi}2r−1

i=0 defined in (25) the computation of the matrix-
by-vector products

ki = Uip, ti = Wip, (26)

costs O(M log M) flops for a fixed 0 ≤ i < r.

Proof. Consider a Hankel matrix

Gi =
(

Wi
Ui

)
.

A product Gip is a result of the convolution ui ◦ p̂, which can be done by the FFT [81,82] procedure in O(M log M) flops for 
a fixed 0 ≤ i < r. The vector p̂ = (pM−1, . . . , p1, p0)

T is taken in the reverse order. �
Once the basis {Qi}d−1

i=0 for the span of H is found, the complexity of the multiplication Ap in (20) can be estimated as 
follows.

Theorem 2. Let the set {Qi}2r−1
i=0 defined in (25) be a basis set of the linear span H generated by the set of Hankel matrices Hm defined 

in (21). Then the computation of any Ks elements si of the vector s (20) costs O(rM log M + r2M) flops for Ks =O(rM).

Proof. Indeed, by the assumption Hm =∑2r−1
i=0 cmiQi for each m, 0 ≤ m < k. The complexity of the product Qip, 0 ≤ i < 2r

for a fixed i is O(M log M) flops by Lemma 4. The computation of such products for all i takes O(rM log M) flops.
The vector hm , which is a subvector of s, is represented via few matrix-by-vector products (26) as follows

hm = Hmp = Lmp + Rmp =
r∑

i=0

αmiUip + βmiWip =
r∑

i=0

αmiki + βmiti . (27)

The computation of its i-th component hmi takes O(r) flops for any m. Computation of O(rM) components s j of the 
vector s, which are also the components of the particular vector hm (for m =

⌊
j

M

⌋
), costs, in turn, O(r2M) flops. Finally, 

O(rM log M + r2M). �
Remark 1. Each component of the resulting vector can be computed by the formula

s j = hm jl j =
r∑

i=0

αm j ikil j + βm j itil j , m j =
⌊

j

M

⌋
, l j = j mod M. (28)

Here kil j is the l j -th component of the vector ki and til j is the l j -th component of the vector ti .

Remark 2. It follows from Lemma 3 that αi+1, j = βi j in (27).

3.4. Final algorithm

To compute F̃ (n)
1 (xi), which defines the final solution (11) on the mesh (13), one needs to carry out iterations (17)

starting from k = n down to 1. At each iteration step k we construct a function fk

(
x(k)

i

)
, which approximates the entries sk

i

in equation (28) as follows. Suppose, that the function fk+1

(
x(k+1)

i

)
has been already constructed at the previous step k +1. 

Then, to compute fk

(
x(k)

i

)
at the current iteration k, we consider3 the matrix �(k+1) with the entries

3 But do not compute all its elements.
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Fig. 3. Construction of matrix �(k) from a one-dimensional convolution (20) according to algorithm in Section 3.4. On a spatial homogeneous mesh (13)
the corresponding entries of vector s (20) are calculated. By definition, vector s is composed from vectors hm (24). Each column of the matrix �(k) is 
composed of hm multiplied by a corresponding factor e−wk V (xi ,τn−k)δt . Then this matrix is decomposed by a cross approximation �(k) = BVT (30). For the 
approximation there needed only some elements of matrix �(k) , which are chosen adaptively and computed on-the-fly. Then convolutions gi = ui ◦ p are 
calculated via fast Fourier transform and saved in the memory. Particular values of s(k)

i for the next iteration step k − 1 can be computed by formula (28)
then.



(k+1)
i j = fk+1

(
yij
)

e−wk V (yi j,τn−k)δt, yij = x(k+1)
i+ j·M , (29)

and apply the cross approximation (A.2) to this matrix. The columns of this matrix are vectors h(k+1)
m element-wise multiplied 

by the corresponding exponential factor with the potential (29), see Fig. 3. The algorithm of the cross approximation requires 
only O(rM) entries, which are being chosen adaptively. They are calculated by the function fk+1

(
yij
)

on-the-fly for the 
particular points yij . Thus,

�(k+1) = BVT , B ∈R
M×r, V ∈R

(k+1)×r, r � M, (30)

where B and V are matrices of the rank r saved in memory. By construction, the m-th column of matrix �(k+1) is the 
vector lm from (22) and the i-th column of matrix B is the basis vector ui from Lemma 1. Hence, VT is the matrix of 
coefficients of the decomposition (C.1). Once the cross approximation (30) is obtained, the memory allocated for all data 
structures related to fk+1

(
x(k+1)

i

)
can be overwritten at the next iteration.

Computation of the circulant matrix-vector products (26) is done according to Lemma 4 by the convolution gi = bi ◦ p̂, 
where bi is a column of the matrix B. The vectors gi = (ti, ki)

T are also saved in the memory. Then fk

(
x(k)

i

)
is calculated 

by equation (28), and the algorithm proceeds to the next iteration.
At some iteration step k the rank of the decomposition (30) will reach the number of columns and from this iteration 

it will be more efficient to carry out the convolution (20) without low-rank approximation. Complexity of one iteration 
of the presented algorithm is estimated in Theorem 2. Finally, for all n steps it is O(nrM log M + nr2M) flops, r � n. The 
standard FFT based algorithm applied to the whole array without any low-rank compression at each step gives complexity 
for all n steps equal to O(n2 M log M) flops. We illustrate these theoretical estimations by the example from Section 4.2
in Fig. 4.

Basically, the asymptotic complexity, proven in Theorem 2 is practically useful for r � n. This is the main assumption 
for the matrix from (29). Existence of such an approximation (and the properties of the initial problem) is in general still 
an open question. Some particular cases were studied in [83]. It was shown, that the cross approximation converges for 
matrices having singular vectors satisfying the coherence property. Some estimations can be found in [84–86] also. There is 
a theoretical idea how to identify the existence of the low-rank structure of a given matrix generated by a one-dimensional 
target function a priori (see [87] and Appendix B for details).
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Fig. 4. A numerical illustration of theoretical estimations for the example from Section 4.2. For a standard FFT based algorithm applied to the whole array 
the O(n2 M log M) flops complexity is labeled by square points. The low-rank complexity O(nrM log M + nr2 M) flops is labeled by circles. The time is 
scaled in minutes, n is the number of dimensions (iteration steps), M = 8000, r = 10.

4. Numerical experiments and discussions

4.1. Harmonic oscillator

As a first example, let us consider a model system, which can be solved analytically, with the initial condition fho(x) and 
the dissipation rate V ho(x, t) defined as

fho(x) = p(β, x) =
√

β

π
e−βx2

, V ho(x, t) = x2

t + 1
. (31)

According to equation (11) the exact solution u(n)

ho (x, t) for the particular case (31) has the following form (see Appendix D
for derivation)

u(n)

ho (x, t) = �
(n)
1 (x) e−w0 V (x,t) δt . (32)

Comparison of the numerical low-rank solution with the exact one (32) gives the relative error

ε = ∥∥ũ − u
∥∥/‖u‖ , (33)

which in the order of magnitude is equal to the machine precision, where ũ is an approximate solution on the final mesh 
and u is the exact one on the same mesh. For our example

ũi = F̃ (n)
1 (xi) e−w0 V ho(xi ,T ) δt, ui = �

(n)
1 (xi) e−w0 V ho(xi ,T ) δt .

Here σ = 0.25, T = 10, n = 100, and the mesh is a uniform one on [−2, 2] with M = 2Nx = 8000 points. It is interesting 
that the scheme is exact for this case.

4.2. Cauchy distribution

The second example is taken from [25] and is interesting because it can be solved analytically as well. For V c(x, t) and 
initial condition fc(x) such that

V c(x, t) = − 1

t + 1
+ 2σ

3x2 − 1

(x2 + 1)2
, fc(x) = 1

π

1

x2 + 1
, (34)

the exact solution is

uc(x, t) = 1 t + 1
2

.

π x + 1
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Table 1
Convergence rate for system (34). Accuracy of the cross approximation ε = 10−10. Direct convolutions start from n = 20, σ = 0.5, range of final spatial 
domain is [−2, 2), Nx = 4000. Dimension of the integral (4) is labeled by n, δt is a time step, T is a final time for solution u(x, T ), ε is an error estimated 
by the Richardson extrapolation, and p is the order of the scheme for δt . Ranks of the matrix �(k) from (30) are presented in column labeled by r. The 
CPU time for computation of the integral (4) in all points of the mesh is reported in the last column.

T n δt p ε r CPU time (min.)

1.0 32 3.1 · 10−2 – 2.8 · 10−4 10 0.1
64 1.6 · 10−2 – 7.0 · 10−5 10 0.2

128 7.8 · 10−3 1.997 1.8 · 10−5 10 0.4
256 3.9 · 10−3 1.999 4.4 · 10−6 10 0.9
512 2.0 · 10−3 2.0 1.1 · 10−6 10 1.8

1024 9.8 · 10−4 2.0 2.8 · 10−7 10 3.8

20.0 32 6.3 · 10−1 – 4.1 · 10−1 10 0.1
64 3.1 · 10−1 – 1.6 · 10−1 10 0.2

128 1.6 · 10−1 1.10 4.8 · 10−2 10 0.4
256 7.8 · 10−2 1.68 1.2 · 10−2 10 0.9
512 3.9 · 10−2 1.93 3.1 · 10−3 10 1.9

1024 2.0 · 10−2 1.98 7.9 · 10−4 10 4.0
2048 9.8 · 10−3 1.995 2.0 · 10−4 10 8.0
4096 4.9 · 10−3 1.999 4.9 · 10−5 10 16.8
8192 2.4 · 10−3 2.0 1.2 · 10−5 10 37.5

In Table 1 we present numerical results demonstrating the numerical order of scheme by the Runge formula

p = log2

∥∥un − un/2
∥∥∥∥un/2 − un/4
∥∥ ,

with respect to δt and the timings for the whole computation. Here un is the computed solution at the final step in time.
Using our approach, it becomes possible to calculate u(n)(x, t) for large values of final time T due to the low-rank

approximation of matrices �(k) composed from the columns of the integrand values (see Section 3.4). That significantly 
reduces the computational cost. For an example, for the last row of Table 1 iterations start from the calculation of the 
convolution on the range [−16 386, 16 386) with 32 772 000 mesh points. This is reduced to the calculation of 10 (the rank) 
convolutions of two arrays with 8000 elements.

As it can be seen from our results, the scheme has the second order in time. It can be improved to higher orders by 
Richardson extrapolation on fine meshes [88,89]. Another way is to use other path integral formulations with high-order 
propagators [90,91].

4.3. Nonperiodic potential with impurity

The dissipation rate V (x, t) causes the creation and annihilation of diffusing particles, as it follows from the main equa-
tion (1). Without the Laplacian, which is responsible for the free diffusion, we have

∂

∂t
u(x, t) = −V (x, t)u(x, t).

It can be seen, that the density of particles increases over time for V (x, t) < 0 and decreases for V (x, t) > 0 correspondingly. 
The case V (x, t) < 0 may lead to an instability in the solution, because the integral

∞∫
−∞

f (x + ξ)e−wi V (x+ξ,τn−i)δte−λξ2
dξ, (35)

may diverge (see Eq. (4)). Therefore, when choosing V (x, t) < 0, one should make sure that the integral in (35) converges.
Consider the following problem (see Fig. 5)

V i(x) = a + sin2
(
π
( x

a
+ 1

))
− 1

1 + ( x
a + 1

)8
, f i(x) =

√
β

π
e−β(x−a)2

, a = 0.5, β = 0.5. (36)

It can be interpreted as a nonperiodic system with an impurity. The term V (x) does not decay in the spatial domain and 
it is not periodic. Therefore the reduction of this problem to a bounded domain is not a trivial task and would require 
sophisticated artificial boundary conditions.

In Table 2 we present results of numerical calculations, which show the order of the numerical scheme. In Fig. 6 we also 
present the computed solutions for different values of n. Even in this case, the solution converges with the order p = 2. We 
also used the Richardson extrapolation of u(x, T ) for different n to get higher order schemes in time. (See also Fig. 7.)
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Fig. 5. Potential V (x) and initial distribution f (x) for periodic system with impurity (36). Potential oscillates on a free space. Functions V (x) and f (x) are 
relatively shifted to break the symmetry.

Table 2
Convergence rate for system (36). Accuracy of the cross approximation ε = 10−12. Direct convolutions start from n = 20, σ = 0.25, final domain is [−2, 2), 
Nx = 8000. Dimension of the integral (4) is labeled by n, δt is the time step, T = 20 is the final time. The order of the scheme p2 for δt and the relative 
error ε2 (33) are estimated from the original data computed by the algorithm from Section 3.4. The next values p4 and ε4 are estimated by the Richardson 
extrapolation. As it can be seen, the scheme has the fourth order in time after the extrapolation. The ranks of the matrix �(k) from (30) are given in the 
column labeled by r. The CPU time for computation of the integral (4) in all points of the mesh is reported in the last column.

n δt p2 ε2 p4 ε4 r CPU time (min.)

64 3.1 · 10−1 – – – – 9 0.2
128 1.6 · 10−1 – 8.3 · 10−2 – – 9 0.3
256 7.8 · 10−2 1.47 3.3 · 10−2 – 2.8 · 10−3 9 0.8
512 3.9 · 10−2 1.62 1.1 · 10−2 2.00 7.0 · 10−4 9 1.7

1024 2.0 · 10−2 1.84 3.1 · 10−3 3.04 8.6 · 10−5 9 3.6
2048 9.8 · 10−3 1.95 8.1 · 10−4 3.66 6.8 · 10−6 9 7.0
4096 4.9 · 10−3 1.988 2.0 · 10−4 3.85 4.7 · 10−7 9 14.7
8192 2.4 · 10−3 1.997 5.1 · 10−5 3.98 3.0 · 10−8 9 33.0

Fig. 6. Convergence of solution u(x, t) for nonperiodic potential with impurity (36) for different n. These results correspond to the data presented in Table 2. 
The number of spacial mesh points M = 2Nx = 8000 in the final range [−2, 2). The dissipation rate (36) leads to a decrease in the norm of the distribution 
density. As seen in the picture, the solution is far from the correct one for the dimensions n = 64, 128, 256.
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Fig. 7. The first few singular values (s.v.) of the matrix (30) for system (34) at each iteration step. The first s.v. σ1 is presented in the absolute value. 
The other ones are given in the relative values as σi/σ1. The values below the cross accuracy ε = 10−10 are thrown out. As it can be seen, approximate 
SVD-rank is similar to the cross rank (in the sense of criterion (A.3)).

Table 3
Timings for system (34). Accuracy of the cross approximation ε = 10−10. Direct convolutions start from n = 30, σ = 0.5, range of final spatial domain is 
[−2, 2), Nx = 4000. Dimension of the integral (4) is labeled by n, δt is a time step, T is a final time for solution u(x0, T ) computed in a fixed point x0. Here 
x0 = 0, T = 1. The relative error ε = |ũ(x0, T ) − u(x0, T )|/|u(x0, T )| is computed in one point x0. Time for one point calculation is presented for Monte Carlo 
approach (37) and is estimated for the whole mesh array consisting of M = 2Nx = 8000 points (the last column). For the low-rank computation the total 
timings are presented as well. Monte Carlo simulation has been done with K = 109 samples. The low-rank results are labeled by LR, while the Monte Carlo 
results are labeled by MC.

n δt u(x0, T ) ε CPU time (1 point) CPU time (total)

32 3.1 · 10−2 0.6369899MC 5.8 · 10−4 40.2 min 5.3 · 103 h (est.)
0.6369792LR 5.6 · 10−4 6 s

64 1.6 · 10−2 0.6367165MC 1.5 · 10−4 79.1 min 1.0 · 104 h (est.)
0.6367099LR 1.4 · 10−4 13 s

128 7.8 · 10−3 0.6366653MC 7.2 · 10−5 171 min 2.2 · 104 h (est.)
0.6366423LR 3.5 · 10−5 26 s

256 3.9 · 10−3 0.6366388MC 3.0 · 10−5 355 min 4.7 · 104 h (est.)
0.6366254LR 8.9 · 10−6 53 s

512 2.0 · 10−3 0.6366218MC 3.2 · 10−6 705 min 9.4 · 104 h (est.)
0.6366212LR 2.2 · 10−6 1.8 min
0.6366198exact

4.4. Monte Carlo experiments

In this section we present results of Monte Carlo simulation. To estimate the solution in a fixed point x0 the following 
formula is used

u(n)
MC(x0, T ) = 1

K

K∑
k=1

f
(
ξ〈k〉(n)

) n∏
i=0

e−wi V (ξ〈k〉(i),τn−i)δt,

ξ〈k〉(i) = ξ〈k〉1 + . . . + ξ〈k〉i, (37)

where each component of the vector ξ 〈k〉 = (ξ〈k〉1, . . . , ξ〈k〉n)T is independently taken from the normal distribution 
N (0, 2σδt) at each trial step k : 1 ≤ k ≤ K , where K being the number of trials.

Results for the exactly solvable model (34) are presented in Table 3. We compare accuracy and timings for Monte Carlo 
and low-rank calculations. It should be emphasized that in the Monte Carlo approach only one point of u(x0, T ) is calculated 
for a fixed x0 in one simulation, while our approach allows to compute the whole array u(xi, T ) on the whole mesh 
simultaneously. This numerical experiments have been done on a single CPU core without parallelization of the Monte Carlo 
algorithm just to estimate the speedup of the low-rank computation. More advanced realization such as quasi Monte Carlo 
methods can be used. As it can be seen, the low-rank algorithm presented in Section 3.4 is much faster.
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5. Conclusion and future work

The presented results show that the proposed method is an efficient approach for solving diffusion equations in a free 
space without artificial boundary conditions (ABC). Instead of standard solvers based on the ABC designed for certain 
cases [92,93], our method is more universal one and is applicable to a wide class of potentials as a unified approach. It 
needs a constant memory size, which depends only on the final mesh size M and the rank r of the matrix of solution 
from (30) at each iteration step. Its complexity, then, is similar to the classical time-stepping schemes for the solution of 
the reaction–diffusion equations in a bounded domain. It also shows a favourable scaling.

It is natural to extend the approach presented in the current work to higher dimensions. Then, instead of one-
dimensional convolutions we will have to work with d-dimensional convolutions, where d is the dimension of the problem. 
The extended domain will be [−na, na]d , where n is the number of time steps (equal to the dimension of the path integral). 
Thus, for higher dimensions the solution can be treated as a (d + 1)-dimensional tensor of size M × n × . . . × n. Instead 
of the matrix low-rank approximation, stable low-rank factorization based on the tensor train decomposition [44] could be 
used, with the final cost approximately equal to the cost of the computation the convolutions on the small domain.

Finally, the most intriguing part of the work to be done is to apply the similar techniques to the Schrödinger equation. 
There, the convolution is no longer a convolution with a Gaussian function. Thus, the problem is much more difficult and 
our approach requires modifications. The presented method can also be applied to path integrals arising in other application 
areas, including the financial mathematics. The main requirement is that the integrand depends on the sum of variables 
multiplied by a separable function.
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Appendix A. The cross approximation of matrices

Let A ∈ R
n×m and Î = {i1, i2, . . . , ir}, Ĵ = { j1, j2, . . . , jr} be subsets of I = {1, . . . , n} and J = {1, . . . , m}, respectively, 

r ≤ min(n, m). By Â = A( Î, Ĵ ) we denote a submatrix of A formed by the entries of A at the intersections of rows i ∈ Î and 
columns j ∈ Ĵ . In this paper we use the following concept of the skeleton decomposition [94–97]. For any matrix A ∈ R

n×m of 
rank r there exists its decomposition

A = BÂ−1CT , (A.1)

where B = A(I, Ĵ), CT = A( Î, J ), and Â = A( Î, Ĵ ) ∈ R
r×r is a certain submatrix of A, such that detÂ �= 0. For the numerical 

reasons it is more effective to work with orthogonal matrices. The decomposition (A.1) can be rewritten by the factorization 
of the matrices B = QB RB and CT = RT

C QT
C by the QR-decomposition, and by further factorization of the rank-r square matrix 

RB Â−1RT
C = UA�AVT

A by the singular value decomposition (SVD) [98,99]. Thus, we will use the dyadic representation of (A.1)

A = XYT , Aij =
r∑

q=1

XiqY jq, X = QB UA�
1/2
A , YT = �

1/2
A VT

AQT
C . (A.2)

If the rank of the matrix A is greater than r, in practice instead of exact equation (A.1) we consider approximation in 
some norm. To obtain the decomposition (A.2) in this case we use the cross approximation algorithm [100,101] based on 
the concept of the maximum volume submatrix (maxvol) introduced in [102,103]. We have implemented our version of the 
algorithm available at [104,105]. Example of the usage of our code can be found in [106]. The new version of the code for 
complex and real matrices will be available soon at [107].

The rank in the cross approximation technique is determined adaptively. The algorithm starts from the guess rank r0 and 
at each iteration step k the subspace of vectors of B and CT is doubled (they are chosen by the maxvol subroutine, which 
returns a set of 2rk row (column) indices of a submatrix of (almost) maximum volume). The next value of the rank rk+1, 
rk+1 ≤ 2rk is chosen from the singular values of the matrix �A of size 2rk × 2rk according to the following criterion

rk+1 = min
1≤s≤2rk

{s | ζ(s) < εc} , ζ(s) =
√√√√∑2rk

i=s+1 σ 2
i∑2rk

i=1 σ 2
i

, ζ(2rk) ≡ 0. (A.3)

The algorithm stops when ||�(k)
A − �

(k+1)
A ||2 < εc�

(k+1)
A for the relative accuracy εc .

Approximation (A.2) can be obtained by the SVD decomposition of the whole matrix A with O((n2 + m2)m) complex-
ity, which is prohibitively slow. In contrast, the rank-r cross approximation requires only O((n + m)r) evaluations of the 
elements and O((n + m)r2) additional operations. This becomes crucial in practice, when the matrix element Aij is a time-
consuming function to be calculated in a point (i, j) for a finite time or the given matrix is very large. Existence of such an 
approximation and convergence of the cross algorithm are discussed in Section 3.4 and Appendix B.
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Appendix B. Numerical investigation of the low-rank structure of the solution basis set

Suppose, a function t(x) ∈ L2(R) can be expanded into a series

t(x) =
∞∑

l=0

clφl(x), cl =
∞∫

−∞
t(x)φl(x)dx, (B.1)

where

φl(x) =
(

1

2ll!√π

) 1
2

e−x2/2 Hl(x), H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, (B.2)

and Hl(x), are Hermite polynomials, with fast decaying coefficients cl , such that for a given accuracy ε1

∃ l0 : χ(l0) < ε1 χ(0), χ(l′) =
∞∑

l=l′+1

c2
l .

And the approximated function

t̃(x) =
l0∑

l=1

clφl(x), ||t(x) − t̃(x)|| < ε1

is of a canonical ε1-rank l0. Then, the question is about the rank structure of the matrix �l constructed as a reshape of a 
corresponding one-dimensional basis vector φl(xi) defined on the uniform mesh (15)

(
l)i j = φl(xi+ j·M). (B.3)

If the matrices {�l}l0
l=1 are the low-rank ones then the matrix of a target function t̃(x)

T =
l0∑

l=1

cl �l, Tij = t(xi+ j·M), (B.4)

is of low-rank as well, which does not exceed the upper bound l0 · rmax, where rmax = max1≤l≤l0(rank(�l)), but practically, 
it is of order rmax. In the Table 4 we present first several singular values of matrix �l . As it can be seen, each matrix has 
the low-rank structure. It would be nice to prove this numerical fact theoretically.

Finally, to estimate the rank of the approximation (B.4) one needs only to compute the coefficients cl in the expan-
sion (B.1) and investigate their behaviour. This idea is similar to the QTT approach applied to the Laplace and its inverse 
operators in [108].

Appendix C. Proof of the lemmas

Proof of Lemma 1. For the basis set {ui}r1−1
i=0 the following equality holds

lm =
r1−1∑
i=0

αmiui . (C.1)

Then, according to (6)

[
lT
m,0

]
H

=
⎡
⎣r1−1∑

i=0

αmiu
T
i ,0

⎤
⎦

H

=
r1−1∑
i=0

αmi

[
uT

i ,0
]

H
, ⇔ Lm =

r1−1∑
i=0

αmiUi, ∀m ∈ [0,k − 1]. � (C.2)

Proof of Lemma 2. From the equality rm =∑r2−1
i=0 βmiwi it follows that

[
0T , rm

]
H

=
⎡
⎣0T ,

r2−1∑
i=0

βmiwi

⎤
⎦ =

r2−1∑
i=0

βmi

[
0T ,wi

]
H

, ⇔ Rm =
r2−1∑
i=0

βmiWi, ∀m ∈ [0,k − 1]. �

H
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Table 4
Singular values (s.v.) of the matrix (B.3) composed from the discretized basis (B.2). The order of polynomials is labeled by l, σ1 is the first (absolute) 
singular value, then σi/σ1 corresponds to the following relative singular values. The size of the matrix is 8000 × 1024. As it can be seen (numerical) ranks 
do not exceed the value of 8 and grow from small to bigger l.

l σ1 σ2/σ1 σ3/σ1 σ4/σ1 σ5/σ1 σ6/σ1 σ7/σ1 σ8/σ1 σ9/σ1

0 32.2 0.96 9.0 · 10−5 8.7 · 10−5 8.9 · 10−16 8.7 · 10−16 7.4 · 10−16 6.4 · 10−16 5.5 · 10−16

1 35.5 0.77 0.6 · 10−3 0.6 · 10−3 1.1 · 10−14 1.1 · 10−14 3.7 · 10−16 3.4 · 10−16 2.8 · 10−16

2 40.3 0.48 2.2 · 10−3 1.6 · 10−3 8.6 · 10−14 8.3 · 10−14 5.6 · 10−16 5.0 · 10−16 4.6 · 10−16

3 38.0 0.62 0.8 · 10−3 0.7 · 10−3 6.2 · 10−13 5.1 · 10−13 5.0 · 10−16 4.4 · 10−16 4.4 · 10−16

4 37.0 0.68 2.1 · 10−2 1.8 · 10−2 3.9 · 10−12 3.8 · 10−12 6.6 · 10−16 4.6 · 10−16 4.5 · 10−16

5 35.5 0.77 5.0 · 10−2 4.1 · 10−2 2.1 · 10−11 1.5 · 10−11 5.0 · 10−16 4.0 · 10−16 4.0 · 10−16

6 38.3 0.59 9.2 · 10−2 5.8 · 10−2 9.2 · 10−11 8.8 · 10−11 5.3 · 10−16 4.8 · 10−16 4.6 · 10−16

7 33.9 0.83 0.18 0.13 4.8 · 10−10 3.7 · 10−10 3.8 · 10−16 3.8 · 10−16 3.4 · 10−16

8 36.2 0.68 0.25 0.09 1.9 · 10−9 1.8 · 10−9 4.1 · 10−16 4.0 · 10−16 3.5 · 10−16

9 38.2 0.47 0.29 0.26 7.3 · 10−9 7.0 · 10−9 4.7 · 10−16 3.8 · 10−16 3.6 · 10−16

10 28.7 0.85 0.60 0.58 3.6 · 10−8 2.9 · 10−8 7.9 · 10−16 4.7 · 10−16 4.5 · 10−16

11 31.1 0.73 0.65 0.35 1.1 · 10−7 9.4 · 10−8 5.5 · 10−16 5.0 · 10−16 4.7 · 10−16

12 33.1 0.65 0.58 0.25 3.7 · 10−7 3.1 · 10−7 5.3 · 10−16 5.0 · 10−16 4.8 · 10−16

13 30.1 0.69 0.68 0.51 1.3 · 10−6 1.2 · 10−6 7.0 · 10−16 5.7 · 10−16 5.3 · 10−16

14 26.2 0.95 0.74 0.67 3.9 · 10−6 3.2 · 10−6 7.2 · 10−16 6.9 · 10−16 6.1 · 10−16

15 30.2 0.74 0.71 0.38 8.0 · 10−6 8.0 · 10−6 6.2 · 10−16 6.0 · 10−16 5.3 · 10−16

16 30.8 0.82 0.63 0.21 2.0 · 10−5 1.7 · 10−5 5.3 · 10−16 4.9 · 10−16 4.6 · 10−16

17 28.4 0.92 0.67 0.43 5.5 · 10−5 5.2 · 10−5 5.1 · 10−16 4.6 · 10−16 4.6 · 10−16

18 28.5 0.88 0.68 0.48 1.3 · 10−4 1.1 · 10−4 5.9 · 10−16 5.5 · 10−16 5.4 · 10−16

19 30.0 0.86 0.51 0.47 2.6 · 10−4 2.3 · 10−4 5.0 · 10−16 4.8 · 10−16 4.5 · 10−16

20 31.6 0.80 0.56 0.24 5.3 · 10−4 3.4 · 10−4 5.3 · 10−16 4.7 · 10−16 4.5 · 10−16

21 28.9 0.90 0.72 0.23 1.12 · 10−3 1.1 · 10−3 4.6 · 10−16 4.4 · 10−16 4.3 · 10−16

22 27.0 0.98 0.76 0.47 2.5 · 10−3 2.4 · 10−3 6.2 · 10−16 5.6 · 10−16 4.8 · 10−16

23 30.3 0.67 0.62 0.59 4.03 · 10−3 4.0 · 10−3 6.0 · 10−16 4.8 · 10−16 4.7 · 10−16

24 28.0 0.82 0.78 0.53 8.3 · 10−3 6.9 · 10−3 8.2 · 10−16 7.6 · 10−16 4.8 · 10−16

25 30.0 0.77 0.76 0.23 1.4 · 10−2 1.3 · 10−2 2.4 · 10−15 1.7 · 10−15 5.8 · 10−16

26 29.4 0.91 0.67 0.16 2.4 · 10−2 2.0 · 10−2 7.7 · 10−15 6.8 · 10−15 6.3 · 10−16

27 27.4 0.88 0.87 0.34 4.2 · 10−2 3.7 · 10−2 2.6 · 10−14 2.4 · 10−14 4.5 · 10−16

28 29.4 0.75 0.71 0.50 5.8 · 10−2 5.7 · 10−2 6.8 · 10−14 5.6 · 10−14 5.6 · 10−16

29 28.4 0.81 0.71 0.56 8.9 · 10−2 8.4 · 10−2 2.2 · 10−13 1.5 · 10−13 5.5 · 10−16

30 27.8 0.86 0.79 0.44 0.14 8.8 · 10−2 6.2 · 10−13 5.6 · 10−13 5.1 · 10−16

31 28.0 0.96 0.74 0.20 0.17 0.12 1.2 · 10−12 1.2 · 10−12 6.1 · 10−16

32 26.3 0.99 0.89 0.27 0.19 0.14 5.4 · 10−12 5.3 · 10−12 7.8 · 10−16

Proof of Lemma 3. From definition (22) and the decomposition lm =∑r1−1
i=0 γmiui, ∀ jm ∈ [0, k], it follows that

(
rm

lm,(M−1)

)
= lm =

r1−1∑
i=0

γmiui =
r1−1∑
i=0

γmi

(
wi

um,(M−1)

)
, ⇒ rm =

r1−1∑
i=0

γmiwi . �

Appendix D. Solution for the harmonic oscillator potential

In this section we analytically integrate equations (8), (9), (10) with the initial condition (31).
Let us define F (n)

k (x) ≡ �
(n)

k (x) for harmonic potential (31). Starting from k = n,

�
(n)

k (x) =
√

λ

π

√
β

π

∞∫
−∞

e−β(x+ξ)2
e−wn(x+ξ)2δt e−λξ2

dξ,

and making use of the integral

P (α,β, y) =
∞∫

−∞
p(β, y + ξ)p(α, ξ)dξ = p

(
αβ

α+β
, y
)

=
√

αβ
π(α+β)

e− αβ
α+β

y2
, y ∈ R, α,β > 0,

where p(α, x) is defined in (17), we obtain

�
(n)
n (x) =

√
βn

γn

√
βn−1

π
e−βn−1x2

, βn−1 = λγn

λ + γn
, γn = βn + wnδt, βn = β.



572 M.S. Litsarev, I.V. Oseledets / Journal of Computational Physics 305 (2016) 557–574
For the next k = n − 1, we have

�
(n)
n−1(x) =

√
λ

π

√
βn

γn

√
βn−1

π

∞∫
−∞

e−βn−1(x+ξ)2
e−wn−1

(x+ξ)2

1+δt δt e−λξ2
dξ,

�
(n)
n−1(x) =

√
βn

γn

√
βn−1

γn−1

√
βn−2

π
e−βn−2x2

, βn−2 = λγn−1

λ + γn−1
, γn−1 = βn−1 + wn−1

δt

1 + δt
.

By induction, we conclude that

�
(n)

k (x) = �
(n)

k

√
βk−1

π
e−βk−1x2

, βk−1 = λγk

λ + γk
, γk = βk + wk

δt

1 + (n − k)δt
,

�
(n)

k =
√

βn

γn

√
βn−1

γn−1
· . . . ·

√
βk

γk
, 1 ≤ k ≤ n.
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