期刊论文详细信息
JOURNAL OF CLEANER PRODUCTION 卷:317
Traffic-induced atmospheric pollution during the COVID-19 lockdown: Dispersion modeling based on traffic flow monitoring in Turin, Italy
Article
Ravina, Marco1  Esfandabadi, Zahra Shams1,2  Panepinto, Deborah1  Zanetti, Mariachiara1 
[1] Politecn Torino, Dept Environm Land & Infrastruct Engn DIATI, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Politecn Torino, Energy Ctr Lab, Via Paolo Borsellino 38-16, I-10138 Turin, Italy
关键词: Air quality;    Dispersion modeling;    Emission;    Pandemic;    Transportation;    Urban planning;   
DOI  :  10.1016/j.jclepro.2021.128425
来源: Elsevier
PDF
【 摘 要 】

The COVID-19 pandemic, as a worldwide threat to public health, has led many governments to impose mobility restrictions and adopt partial or full lockdown strategies in many regions to control the disease outbreak. Although these lockdowns are imposed to save public health by reducing the transmission of the virus, rather significant improvements of the air quality in this period have been reported in different areas, mainly as a result of the reduction in vehicular trips. In this research, the city of Turin in the northern part of Italy has been considered as the study area, because of its special meteorology and geographic location in one of the most polluted regions in Europe, and also its high density of vehicular emissions. A Lagrangian approach is applied to illustrate and analyze the effect of imposing full lockdown restrictions on the reduction of traffic-induced air pollution in the city. To do this, the real-time traffic flow during the lockdown period is recorded, and by utilizing CALPUFF version 7, the dispersion of PM2.5, Total Suspended Particulate (TSP), Benzo(a)pyrene (BaP), NOx, and Black Carbon (BC) emitted from all circulating vehicles during and before the lockdown period are compared. Results indicate that the concentration of pollutants generated by road traffic sources (including passenger cars, busses, heavy-duty vehicles, light-duty vehicles, mopeds, and motorcycles) reduced at least 70% (for PM2.5) up to 88.1% (for BaP) during the studied period. Concentration maps show that the concentration reduction varied in different areas of the town, mainly due to the characteristics and strength of the emission sources and the geophysical features of the area.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jclepro_2021_128425.pdf 19674KB PDF download
  文献评价指标  
  下载次数:9次 浏览次数:1次