期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:390
Convergence of sequences of two-dimensional Fejer means of trigonometric Fourier series of integrable functions
Article
Gat, Gyoergy
关键词: Trigonometric system;    Two-dimensional Fejer means;    Subsequence;    Almost everywhere convergence;   
DOI  :  10.1016/j.jmaa.2012.01.038
来源: Elsevier
PDF
【 摘 要 】

The aim of this paper is to prove the a.e. convergence of sequences of the Fejer means of the trigonometric Fourier series of two variable integrable functions. That is, let a = (a(1), a(2)): N -> N-2 such that a(j)(n+1) >= alpha SUPk <= n a(j)(k) (j=1,2, n is an element of N) for some alpha >0 and a(1) (+infinity) = a(2) (+infinity) = +infinity. Then for each integrable function f is an element of L-1 (T-2) we have the ac. relation lim(n ->infinity)sigma(a(n)) f = f. It will be a straightforward and easy consequence of this result the historical cone restricted se. convergence result with respect to the two-dimensional Fejer means of integrable functions due to Marcinkiewicz and Zygmund (1939) [7]. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_01_038.pdf 179KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次