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Almost everywhere convergence

First, we give a brief introduction to the theory of the Fourier series. Let N denote the set of natural numbers, that is,
N={0,1,...} and P=N\ {0}.
The system of functions

e™ (n=0,4+1,42,...)

(x e R, 1 =4/—1) is called the trigonometric system. It is orthogonal over any interval of length 2w, specially over T :=
[—m, 7). Let f € L1(T), that is integrable on T. The kth Fourier coefficient of f is

- 1
fl):=-— / fe™dt,
2
T
where k is any integer number. The nth (n € N) partial sum of the Fourier series of f is

Suf(y) =Y Floe.

k=-n

The nth (n € N) Fejér or (C, 1) mean of function f is defined in the following way:

.1 n
= S .
onf () i= > Sef)
k=0
It is known that

1
wﬂw=;/fmmw—mm
T
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where the function K, is known as the nth Fejér kernel; we find an appropriate expression for it e.g. in the book of Bary [1].
1 (sin(d(n+1))>
2n+1) sin(%) '

From this expression one immediately derives the following properties of the kernel. They will play an essential role later.

Kn(u) =

Kn(u) >0,
2

2(n+ Nu?

Let f be an integrable function, that is, let f € L'(T?2). The k = (k1, k»)th Fourier coefficient of f is

Kn(u) < (0 < ul <m).

n ~ 1
Fio = Fika ko) = 5 / F(xn, x)e BIHR) 4t 1),
TxT

where k1, ky are integers. The nth (n € N2) rectangular partial sum of the Fourier series of f is

nm ny
Suf W) =Samy f1,y2) = Y Y flk, kp)e'Cry1tiarz),

k] =—m 1(2:—112

The nth (n € N2) two-dimensional Fejér or (C, 1) mean of function f is defined in the following way:

_l n ny
n =0m,n = % S )
onf () =0myny) f (V) <"1+1)(“2+1>,q2=0k22=0 kf ()

where y € T2. In 1939 Marcinkiewicz and Zygmund [7] proved their celebrated theorem on the convergence of the two-
dimensional restricted (C, 1) means of trigonometric Fourier series. They proved for any integrable function f € L1(T?) the
a.e. convergence

0(n1,n2)f g f

provided n{/B8 < ny < Bny, where B > 1 is a fixed constant. So, the set of indices (n1,n2) remains in some positive cone
around the identical function. Actually, their proof is not a simple one. Among others, the main theorem of this paper, that
is, Theorem 1 provides an easy proof for this celebrated result of Marcinkiewicz and Zygmund.

We also mention that Jessen, Marcinkiewicz and Zygmund [8] also proved the a.e. convergence oy, f — f without any
restriction on the indices (other than min{nj,n,} — oo), but for functions in Llog™ L. For a joint generalization of these re-
sults of Marcinkiewicz-Zygmund and Jessen—-Marcinkiewicz-Zygmund see the paper of the author [4]. For another proof
of the “cone restricted” convergence of the two-dimensional Fejér means see the paper of Weisz [10] and the result
of Marcinkiewicz and Zygmund with respect to the multi-dimensional case was also proved with a different proof by
Weisz [11]. With respect to this issue one can find some interesting and important read in [6] and [5].

For another modern treatise on the theory of Fourier series see for instance the book of Edwards [3].

We study the a.e. convergence of subsequences of the two-dimensional (C, 1) means ogq) f of integrable functions, that
is, f € L1(T?), where a: N — N2,

Theorem 1. Let a = (a1, az) : N — N2 be a sequence with property aj(400) =400 (j =1, 2). Suppose that there exists an o > 0
such thataj(n +1) > asupycpaj(k) (j=1,2, n € N). Then for each integrable function f € L1(T?) we have the a.e. relation

lim Ua(n)f = f
n—-oo
This theorem, which is the main result of this paper is a consequence of the following lemma.

Lemma 2. Let a = (a1, a2) : N — N2 be a sequence with property aj(400) = +oo (j =1, 2). Suppose that |log, aj| (|x] denotes the
lower integer part of x) is monotone increasing (j = 1, 2). Then for each integrable function f € L'(T?) we have the a.e. relation

lim Oa(n)f = f
n— o0

A straightforward and easy consequence of Lemma 2 is the celebrated result of Marcinkiewicz and Zygmund [7] with
respect to the “cone restricted” almost everywhere convergence of two-dimensional Fejér means of integrable function.
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Corollary 3. Let 8 > 1 and f € L' (I?). Then we have the a.e. relation

n1,ll112n;1>oo Omm)f=f.

1/Bsni/na<p

Proof. The proof of this corollary comes directly from Lemma 2. So, let y := [log, 1. For k,l € N set Ny, |\ := {(1n1,n2) € N2
2k <y < 21 2k=vH < py < 2k HHTY Let Ny, be the union of the disjoint sets N, . It is easy to give a sequence
a:N — N? such that |log,a;], [logyaz] are monotone increasing (for n e Ny 1k we have |logyn1] =k, [logyna| =k—y +1)
and a(N) = N,, ;. This by Lemma 2 gives that for each integrable function f

0(”1,n2)f - f

. . . 2
a.e. provided by n € N,,; and ny,n; — oo. Hence, we also have this a.e. relation for n € Ul:yo N, ;=:Ny and ny,n; — oo.

After then, let n € P2 be such that 1/8 < ny/ny < B. Denote by k the natural number for which 2k < n < 2k+1 . Then,
2k=r < 2k/B <y < 2kF1 g < 2k+¥+1. Consequently, n € N,,. This completes the proof of this corollary. O

Extend the map a: N — N2 to [1, +00) linearly in a way that for n <x<n+1 set

a(x) = (a1(x), a2(x))
=(x—mai(n+ 1)+ @ +1=xa1m), (x—ma@m+1)+ @0 +1—x)ax(n))
=x—nan+1)+ n+1—-x)an).

Without the loss of generality we can suppose from now that aj(n) > 1 for ne N and j=1,2. Also set B(x) =
Llog, @(x))] : [1, +00) — N2,

The following Calderon-Zygmund type decomposition lemma on T2 will play a fundamental role in the proof of
Lemma 2.

The dyadic subintervals of T are defined in the following way:

j0 = {T}7 jl ::{[_n70)7[05n)}1
Jp:={[-m,—m/2),[-7/2,0),[0,7/2),[7/2,7)},

o0
J:= UJ,,.
n=0

The elements of J are said to be dyadic intervals. If F € J, then there exists a unique n € N such that F € J,, and

consequently mes(F) = ZX (the Lebesgue measure). Each J, has 2" disjoint elements (n € N). J x J is the set of dyadic

rectangles. For x € T denote by I,,(x) the element of J,, for which x € I;,(x).

Lemma4. Let f € L'(T?), and 1 > | f|l1/(27)2. Suppose that the functions Bj(x) = |log, @;(x)] : [1, +00) — N are monotone in-
creasing, where functions a; are continuous (j = 1, 2). Then there exists a sequence of integrable functions (f;) and disjoint rectangles

I, (s (Wi, 1) X Iy (s (Ui,2) € Ipy sy X Tpysp such that

o0
f=Y f
i=0
[ folloo < CgA, Il folli <3l fllh, and
supp fi C g, s (i) X Igysi) (Ui 2)
for some s; > 1, u; € T? (i € P). Moreover, sz fix)dx =0 (i > 1) and for

[e¢]
F o= J(Igy s (i) x Ipy(s (i 2))  we have mes(F) <||f 1/
i=1

Proof. Let s; :=1 and

Q1= {] = J1 % J2 €Jp,6s1) X Ipp(sy): mes(J)~! /[f(x)]dx>)»}.
J
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Since, for each | € £21, we have

2B1()+p2(1)

472

mes(J)~' =

)

then we also have
A <mes(J)~ 1 /|f(x)| dx < 2ﬂ1(l)+52(1) /|f(x)| dx < 281(W+B2(1) 5 < Cgh.
T2
Let sy :=inf{s € [s1, +00): Z?:] |Bj(s) — Bj(s1)| > 1}. Recall that the function a is continuous, and B(x) = [log,d(x)] is

monotone increasing and continuous from the right with respect to its both variables. Then we have the following three
cases:

Case 1. B1(s2) = B1(s1) +1 and Ba(s2) = B1(51),
Case 2. B1(s2) = p1(s1) and Ba(s2) = B1(s1) + 1,
Case 3. By1(s2) =p1(s1) + 1 and Ba(s2) = P1(s1) + 1.
We decompose the dyadic rectangles contained in
Upiis) x Ippspl \{J: J € 821}
That is,

2= {] € Jp,(s9) X Tpy(s): mes()) ! /|f(x)|dx>kand #K € 21 suchas J C K].
J

Consequently, for all | € £25 we get

L <mes(J)! /|f(x)|dx < 4.
(In Cases 1 and 2 we even have 22, but it makes no problem to take 4., instead.) Generally, for No>n >3

2
:inf{se [Sn—1, +00): Z\ﬂj(s) = Bj(sn—1)| = 1}.

j=1

That is, Bj(sn) = Bj(sn—1) + 1 for at least one j (j=1,2). If for a j this is not valid, then Bj(s;) = Bj(sn—1). Also take
n—1
2n = {] € Jp,(sm) X Ipy(sy: mes()) ! /|f(x)|dx > and K e ] €2 suchas J c K}
i=1

Similarly, as in the case of £2, we have that for each J € £2, the inequalities

A <mes(J)"! /mx)ydx < 4

hold. Denote by I; € N the number of elements of §2,, and the elements of £, by Jnox (k=1,...,I,, n € N). Since Jg,s,) x
gy (s, has 281G +A2060) (disjoint) elements, then I, < 2#16W+A60) (n € N). For an arbitrary set B C T? the characteristic
function of B is denoted by 15. Let

Jnj:i= (f—meS(Jn,k)_1 f f(X)dX>1Jn,w
]n,k

k=1,....,Ip, neN and F :=J32, Ui”:] Jnk. Since the dyadic rectangles ], are disjoint, then we have the following
decomposition of the function f:
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oo Iy
F=Y20 e+ flozg

n=1 k=1

_Zz<f mes(Jn )~ ]/f(x)dx)ljnk—i-ZZ[mes(]nk)_ /f(x)dx]ljnk+f1Tz\F
n=1k=1 Tnk n=1k=1 Tnk

=Zan,k+fo.
n=1 k=1

This means that fo =3 52, Z ' [mes(Jn )™ 1 f] X fx)dx]1y,  + flp2p and the functions f; (i=1,2,...) in the statement

of Lemma 4 will be the functions fpx (k=1, Jne N). supp fuk C Jnk are disjoint dyadic rectangles,
_ 472
mes(Jnk) = oG

/ fur(x)dx = / ) dx— mes(Jni)~ / £ ) dx - mes(Jnj0) = O,

]n,k .’nk
I fagelln < UF1g, 01+ mes(Jn )~ / |f @) dxlI1y,  ll1 =211 15, ]
]n.k
Consequently,
Zank 2ZZ||f11nkll1 —Z/If(X)IdX<2||fII1
n=1k=1 n=1k=1

This immediately gives

I follh = Hf Zank

n=1k=1

<3| flh-

Since F is the disjoint union of the dyadic rectangles ], then for the two-dimensional Lebesgue measure of F we get

oo In
mes(F) = Z Zmes(]n,k)

n=1k=1

yy! /If(x)ldx

n=1 k=1

=— X)|dx < — .
+ [irwldx< urin
F
It remains to prove | foll < CgA. The construction of £2, gives the inequality

mes(Jn )" f |F()|dx < Cpn
]n,k

(in the case of n =1 we have 281MW+A2(D 3nd in the case of n > 2 we have number 4 as constant C). That is,

Zzljnl<

n=1k=
= CpAllTFlloo + ”f]’ﬂ‘z\l-‘“oo

S Cgr+ 1 f1p2plloo-

l folloo < CpA +||f111‘2\1:||oo
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Let A, be the o-algebra generated by the elements of Jg, (s,) x Jg,(s,) (1 € N). Then we have an increasing sequence of o
algebras

A1 CAyC---.

The conditional expectation operator of the function f with respect to A, at a given point x € T2 is

mes(J)™! / fodt,
J

where | is the unique element of Jg,(s,) X Jg,(s,) Such that x e J. Since lim; o, f1 = limy o B2 = +00, then the martingale
convergence theorem (see e.g. the book of Neveau [9]) gives that this integral mean value converges to f(x) for almost all
x in T2,

Now let x € T2\ F. Then the construction of the set 2, gives for each J € Jg, s, X Ig,(s,) that mes(J)~! f] [f®)]de <A
(for all n € N). From the lines above there follows

[f@)| <A

for almost all x € T2\ F, so

||f1'J1‘2\F||oo <A, I folloo < Cﬂ)\
With this the proof of Lemma 4 is complete. O

For A € N, x € T denote by I1 x)=1a(x) + 2—” = {y+ 2—”' yelax)}eda, 1 ’1(x) =1a(x) — 2—" = {y— 2—”' yelax)} e
Ja the two adjacent intervals of the one- dlmensmnal mterval I4(x). Remark that we mean the addition y + 2” and the

subtraction y — £& by modulo 27. That is, for y € T we also have y +2E oy 2% ¢ T. Also use the notation IO (x) =14(x).

2A ’
Also define the integral mean values of the function f € L'(T) at xe T

2A
Ensf 0= / fod,

)

where § € {—1,0, 1}. For A = (A1, A2) e N?, f € LI(T?), § = (61,82) € {—1,0,1} x {—1,0, 1}, I5(x) = 1 | (x1) ><1 ' (X2), X € T2
set the two-dimensional integral mean values

A1+A2
Ensf(x) = f fde.
15

In the sequel we suppose that the functions g;(x) = [log,a;(x)| are monotone increasing and the functions a;(x) are
continuous (j =1, 2). Let § be as above and f an integrable two variable function. Define the maximal operator E% 5.5 f=
SUPye(1,+o0) | Egt).s f|. With the application of some lemmas below we prove that the maximal operator o* f = supj, |aa(,1)f|
is of weak type (L1, L1). In order to have this the first lemma is:

Lemma 5. E* 5 s of weak type (L', L1). That is, mes{x € T?: E* af(x) > A} < Cgll fll1/A for every positive A.

Proof. Apply Lemma 4. Recall its notation. supp f; C Igs;) (Ui) = I, (s;) (Ui,1) X I, (Ui2) (i€P)and F = Uz, s (uj). Set

o= U’ﬂ(s)(”l)

€1,6€{—1,0,1}

Obviously, mes(9F) < 9mes(F). Fix a § € {—1,0,1}? and let y € T> \ 9F =9F and i € P. Then we prove E* 5f,(y)
Suppose that 1 <t <s;.

If there exists a j € {1,2} such that the one-dimensional intervals Iﬂ ® (yj) and Ig;(sp (Ui, j) are disjoint, then we have
Iﬁ([) (¥) N g (ui) =¥ and consequently

;‘31 ©)+B2(t) 2B81(O+B2(t)
Egwy.s fi(y) = / f,(x)dx_i / fix)dx=0

ﬁ(f)(y) Ifg([)(y)mlﬂ(si)(”i)
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If, for both j € {1, 2}, IB © (¥) N I (ui,j) # @, then since two one-dimensional intervals are disjoint or one of them

contains the other, then g;(t) < Bj(s;) (recall that §; is monotone increasing) gives I (t)(yj) D Igiesn Wi, j) (j=1,2). That
is, If‘}(t) (¥) D Ip(s;) (uj) and this immediately gives

2/31 O)+B2(t) 2B81(O+B2(t)
Eg) s fi(y) = ——— /f,(x)dx—i / fix)dx=0.

e Tpesp i)

Now, we turn our attention to the other case:
Suppose that t > s;.
Eg@),s fi(y) is the integral mean value on the two-dimensional rectangle I () (y) and consequently we integrate function

fi on the set I‘fs(t)(y) N Igs;) (u;). Therefore, if, for either j=1 or j=2, Iﬁj([)(yj) N g Wi j) =9, then Egq) s fi(y) =

That is, we can suppose that the intersection is not the empty set. Since §; is monotone increasing, then g;(t) > B;(s) and
R 3 ) 278 . 275

this implies IﬂJ (t)(yj) C I,gj<s,)(u,~ i) (j=1,2). Thus, Iﬁf ([)(yj) =lIg;n(¥j) + % gives yj + % € Ig;(si) (Ui, j). Consequently,

if we add — 5 ([ to y;+ ﬁ m (modulo 27), then applying the inequality | gi’)l < ﬁ (S) the result y; will be an element

of the union of the mterval Ig;(s;)(uj,j) and its two adjacent intervals. That is, y; € Ig;(s;) (Ui, j) U Iﬂj(si)(u,’,j) u Iﬁj(s,-)(“i,j) for
j=1,2. This gives

ve U e
€1,62€{—1,0,1}

therefore y € 9F and this is a contradiction. That is, for all t we have Eg) s fi(y) =0 which gives Ej Sf, (y)=0on ye9F.
Now, turn back to the notation of Lemma 4.

mes{y € T% Ej 5 f(y) >2Cga}

o0
< mes{y e T?: Ej s fo(y) > Cpr} +mes{y € T?%: EEﬁ(Zfi)(Y) > Cﬂ)\.}

i=1

o0

< mes{y e T?: E} s fo(y) > Cpr} + mes(9F) +mes[y € 9F: EZ,@(ZL’)(}’) > Cﬁ}\.}
i=1

=1+ 1+1l.

It is quite easy to have that ||E;§’5fo||Oo <l folloo < CgA and consequently I = 0. For IIl by the Markov inequality and the
o -sublinearity of operator E% ps We have

I < ’3/Eﬁ5<2f1>

\Tﬂ/i Epsfi= ﬁZ/Eﬁsfz

oF i=1 i= 1—

That is, mes{EE’sf > 2CgA} <mes(9F) < 9] fl1/A. This completes the proof of Lemma 5. O
The following lemma is concerned with an estimate of the one-dimensional Fejér kernel.

Lemma 6. Letn, A € N, 24 <n < 24%1, thatis, A = |log, n|, x, y € T. Then we have

A
A-2k
Kn(y —x) <2 Zz st om 0 ®)- (1)

k=0

Proof. First, in order to prove Lemma 6 we prove the following inequality for 0 < x.

A
Ko <2 24721, 0)(0). ()
k=0
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If x € 14(0), then since the right-hand side of (2) for k = 0 is 241, (0)(x) = 2# and since the left-hand side K, (x) < ! <24,
then the inequality (2) is proved in this case.
If x ¢ 14(0), then we have a je{0,...,A — 1} such that 0 <x € [;(0) \ Ij4+1(0), which gives

<x< ;—J By the
inequality (one can find it in Bary’s book [1])

L
2J+1

2

T
0<Knx)<————— (0<|x|<m,neN
n(®) 2(n+ 1)x2 (0 < )
we have K, (x) < 2221:1 . What about the right-hand side of (2)? Since 1;,(0)(x) =1, then we have 2 YA o281y, 0 =

2217AT11 ) (x) = 2217AF1 . That is, inequality (2) is proved. Now, we turn our attention to (1). Since the function K is
even, then Kn(y —X) = Kn(ly — x) < 2102471, ,0)(ly — D). If 11, 40 (ly —x) = 1, that is, |y — x| € 4_¢(0), then

ly — x| < 2;’—7,( and this gives that x is an element one of the intervals I%_k(y), I;lk(y), I}L‘_k(y). That is, it is an element of

I4_k(y) or one of its two adjacent intervals belonging to J4_. Thus, 1Use(—1,o,1) ) x) =1,

A

A
A—2k A2k
Kn(y =) =Kn(ly —x) <2) 2721, o(ly —x) <2) 2 TNserrom 1y @
k=0 k=0

This completes the proof of Lemma 6. O
Now, we are ready to prove Lemma 2.

Proof of Lemma 2. By (1) we prove the following two-dimensional inequality for n € P>, A = |n| := |log, n], f € L1(T?).

lonfl<C Y Do 27MTRE, IS (3)

81,826{—1,0,1} k1 <A1,ka <Az

By the help of Lemma 6 we have

1
lonf )| = ’F/f(X)Kn(y_X)dX
']1‘2

<c Z Z 2A1—2k12A2—2k2/|f(x)|1,5A7k(y)(X)dX

81,826{—1,0,1} k1 <A1, k2 <Az T2
—k1—k
=C Y > 2TRE, Il
81,82€{=1,0,1} k1 <A1, ko< A

That is, (3) is proved.
For j=1,2 the functions 8;(x) = |log, a;j(x)] are monotone increasing on [1,4+00) (j =1, 2) and consequently so do the
functions Bj(x) —k; for j=1,2. We apply Lemma 5.

mes{y eT?: ‘SUPO'a(n)f(y)‘ > A]
n

< mes{y eT?: C sup Z Z 27k gy sIfIG) > A]
LellF00) 51 5y €(—1.0,1) k1 <B1 (), ko <Ba (0)

< mes{y eT?: C Z Z 27 ki—ke Eg sl f1(y) > 7&}

51,526{—],0,1}/{1,/{26N

2. y—ki1—ky * Ca
gmes( U U {yeT 12 2Eﬂ_k75|f|()’)> (k1] + 1D2(ka| + 1)2 })

51,526{7],0,]}1{1,]{261\1

CA
<C mes{y e T2: 27ki=kegx (| f|(y) > }
81’826{2_1.0,”“;@ { pried (et |+ D2 (lka| + 1)

) (k1] + D (k2| + 1)

< Cﬁ )\2’{1 +ko

£l

51,526{7],0,1}1{1,]{261\1
< Callfll /A
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That is, we proved that the maximal operator o/ f = sup, |oam) f| is of weak type (L!,L"). Since for each trigonometric
polynomial P we have the everywhere relation limy,_, o 0(a, (n),a,(n)) P = P, then by the standard density argument (see this
principal for instance in [2]) the proof of Lemma 2 is complete. O

Finally, we have to prove Theorem 1, that is, the main result of this paper. The proof comes from Lemma 2 with some
easy calculations.

Proof of Theorem 1. Without the loss of generality aj(n) > 1 (j =1, 2, n € N) can be supposed. Let L be a positive integer
discussed later. For ,m=0,1,...,L — 1 let some disjoint subsets of N be defined as

o0
Bl,m =IneN: (01 (n)7 a (n)) e U |:25L-H7 2$L+l+'l) % |:2tl.-HTl7 2tL+m+1)
s,t=0

It is clear that these sets are pairwise disjoint and their union is N. Denote the elements of B;,, by n’l’m < nlz’m < e

We prove that |log, aj(ngém)J < |log, aj(nwl)J for every ke N,ILme {0,1,...L — 1} and j=1,2. On the contrary, sup-
pose that |log, aj(nﬁc’fl)J < |log, aj(nL’m)J for some k, [, m and j. Then the definition of B, gives that |log, aj(ngéf&)J <
Llog, aj(nkm)J — L. Thus,

1 Lm Llog, a; k™)) logya; (™) |—L _ 1 Im
Eaj(nl<+1)<2 820 (M4 gzLogza)(nk )] gﬁaj(nk )

Since, nkiﬂ > nf;m, then we have aj(nfc‘ﬁ) > aaj(nfc‘m) and consequently, also have o < 2!1~L. This is obviously not possible

for an L large enough. That is, we proved that |log, a j(n;(‘m)J is monotone increasing with respect to k € N. Lemma 2 gives
the a.e. convergence

klgl(;lo Uﬂ("i””)f =/

for each integrable function f and I,m=0,1,...,L — 1. Merging the L? pieces of subsequences of Oam) f the proof of
Theorem 1 is complete. 0O
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