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The aim of this paper is to prove the a.e. convergence of sequences of the Fejér means
of the trigonometric Fourier series of two variable integrable functions. That is, let a =
(a1,a2) : N →N

2 such that a j(n + 1) � α supk�n a j(k) ( j = 1,2, n ∈ N) for some α > 0 and
a1(+∞) = a2(+∞) = +∞. Then for each integrable function f ∈ L1(T2) we have the a.e.
relation limn→∞ σa(n) f = f . It will be a straightforward and easy consequence of this result
the historical cone restricted a.e. convergence result with respect to the two-dimensional
Fejér means of integrable functions due to Marcinkiewicz and Zygmund (1939) [7].

© 2012 Elsevier Inc. All rights reserved.

First, we give a brief introduction to the theory of the Fourier series. Let N denote the set of natural numbers, that is,
N= {0,1, . . .} and P = N \ {0}.

The system of functions

eınx (n = 0,±1,±2, . . .)

(x ∈ R, ı = √−1) is called the trigonometric system. It is orthogonal over any interval of length 2π , specially over T :=
[−π,π). Let f ∈ L1(T), that is integrable on T. The kth Fourier coefficient of f is

f̂ (k) := 1

2π

∫
T

f (x)e−ıkt dt,

where k is any integer number. The nth (n ∈N) partial sum of the Fourier series of f is

Sn f (y) :=
n∑

k=−n

f̂ (k)eıky .

The nth (n ∈N) Fejér or (C,1) mean of function f is defined in the following way:

σn f (y) := 1

n + 1

n∑
k=0

Sk f (y).

It is known that

σn f (y) = 1

π

∫
T

f (x)Kn(y − x)dx,
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where the function Kn is known as the nth Fejér kernel; we find an appropriate expression for it e.g. in the book of Bary [1].

Kn(u) = 1

2(n + 1)

(
sin( u

2 (n + 1))

sin( u
2 )

)2

.

From this expression one immediately derives the following properties of the kernel. They will play an essential role later.

Kn(u) � 0,

Kn(u) � π2

2(n + 1)u2

(
0 < |u| � π

)
.

Let f be an integrable function, that is, let f ∈ L1(T2). The k = (k1,k2)th Fourier coefficient of f is

f̂ (k) = f̂ (k1,k2) := 1

4π2

∫
T×T

f (x1, x2)e−ı(k1t1+k2t2) d(t1, t2),

where k1, k2 are integers. The nth (n ∈N2) rectangular partial sum of the Fourier series of f is

Sn f (y) = S(n1,n2) f (y1, y2) :=
n1∑

k1=−n1

n2∑
k2=−n2

f̂ (k1,k2)eı(k1 y1+k2 y2).

The nth (n ∈N2) two-dimensional Fejér or (C,1) mean of function f is defined in the following way:

σn f (y) = σ(n1,n2) f (y) := 1

(n1 + 1)(n2 + 1)

n1∑
k1=0

n2∑
k2=0

Sk f (y),

where y ∈ T2. In 1939 Marcinkiewicz and Zygmund [7] proved their celebrated theorem on the convergence of the two-
dimensional restricted (C,1) means of trigonometric Fourier series. They proved for any integrable function f ∈ L1(T2) the
a.e. convergence

σ(n1,n2) f → f

provided n1/β � n2 � βn1, where β > 1 is a fixed constant. So, the set of indices (n1,n2) remains in some positive cone
around the identical function. Actually, their proof is not a simple one. Among others, the main theorem of this paper, that
is, Theorem 1 provides an easy proof for this celebrated result of Marcinkiewicz and Zygmund.

We also mention that Jessen, Marcinkiewicz and Zygmund [8] also proved the a.e. convergence σn f → f without any
restriction on the indices (other than min{n1,n2} → ∞), but for functions in L log+ L. For a joint generalization of these re-
sults of Marcinkiewicz–Zygmund and Jessen–Marcinkiewicz–Zygmund see the paper of the author [4]. For another proof
of the “cone restricted” convergence of the two-dimensional Fejér means see the paper of Weisz [10] and the result
of Marcinkiewicz and Zygmund with respect to the multi-dimensional case was also proved with a different proof by
Weisz [11]. With respect to this issue one can find some interesting and important read in [6] and [5].

For another modern treatise on the theory of Fourier series see for instance the book of Edwards [3].
We study the a.e. convergence of subsequences of the two-dimensional (C,1) means σa(n) f of integrable functions, that

is, f ∈ L1(T2), where a : N→N2.

Theorem 1. Let a = (a1,a2) : N → N2 be a sequence with property a j(+∞) = +∞ ( j = 1,2). Suppose that there exists an α > 0
such that a j(n + 1) � α supk�n a j(k) ( j = 1,2, n ∈ N). Then for each integrable function f ∈ L1(T2) we have the a.e. relation

lim
n→∞σa(n) f = f .

This theorem, which is the main result of this paper is a consequence of the following lemma.

Lemma 2. Let a = (a1,a2) : N→ N2 be a sequence with property a j(+∞) = +∞ ( j = 1,2). Suppose that �log2 a j� (�x� denotes the
lower integer part of x) is monotone increasing ( j = 1,2). Then for each integrable function f ∈ L1(T2) we have the a.e. relation

lim
n→∞σa(n) f = f .

A straightforward and easy consequence of Lemma 2 is the celebrated result of Marcinkiewicz and Zygmund [7] with
respect to the “cone restricted” almost everywhere convergence of two-dimensional Fejér means of integrable function.
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Corollary 3. Let β > 1 and f ∈ L1(I2). Then we have the a.e. relation

lim
n1,n2→∞

1/β�n1/n2�β

σ(n1,n2) f = f .

Proof. The proof of this corollary comes directly from Lemma 2. So, let γ := �log2 β	. For k, l ∈ N set Nγ ,l,k := {(n1,n2) ∈N2:
2k � n1 < 2k+1,2k−γ +l � n2 < 2k−γ +l+1}. Let Nγ ,l be the union of the disjoint sets Nγ ,l,k . It is easy to give a sequence
a : N→N2 such that �log2 a1�, �log2 a2� are monotone increasing (for n ∈ Nγ ,l,k we have �log2 n1� = k, �log2 n2� = k −γ + l)
and a(N) = Nγ ,l . This by Lemma 2 gives that for each integrable function f

σ(n1,n2) f → f

a.e. provided by n ∈ Nγ ,l and n1,n2 → ∞. Hence, we also have this a.e. relation for n ∈ ⋃2γ
l=0 Nγ ,l =: Nγ and n1,n2 → ∞.

After then, let n ∈ P2 be such that 1/β � n1/n2 � β . Denote by k the natural number for which 2k � n1 < 2k+1. Then,
2k−γ � 2k/β � n2 < 2k+1β � 2k+γ +1. Consequently, n ∈ Nγ . This completes the proof of this corollary. �

Extend the map a :N →N2 to [1,+∞) linearly in a way that for n � x � n + 1 set

ã(x) = (
ã1(x), ã2(x)

)
= (

(x − n)a1(n + 1) + (n + 1 − x)a1(n), (x − n)a2(n + 1) + (n + 1 − x)a2(n)
)

= (x − n)a(n + 1) + (n + 1 − x)a(n).

Without the loss of generality we can suppose from now that a j(n) � 1 for n ∈ N and j = 1,2. Also set β(x) =
�log2(ã(x))� : [1,+∞) →N2.

The following Calderon–Zygmund type decomposition lemma on T2 will play a fundamental role in the proof of
Lemma 2.

The dyadic subintervals of T are defined in the following way:

I0 := {T}, I1 := {[−π,0), [0,π)
}
,

I2 := {[−π,−π/2), [−π/2,0), [0,π/2), [π/2,π)
}
, . . .

I :=
∞⋃

n=0

In.

The elements of I are said to be dyadic intervals. If F ∈ I, then there exists a unique n ∈ N such that F ∈ In , and
consequently mes(F ) = 2π

2n (the Lebesgue measure). Each In has 2n disjoint elements (n ∈ N). I × I is the set of dyadic
rectangles. For x ∈ T denote by In(x) the element of In for which x ∈ In(x).

Lemma 4. Let f ∈ L1(T2), and λ > ‖ f ‖1/(2π)2 . Suppose that the functions β j(x) = �log2 ã j(x)� : [1,+∞) → N are monotone in-
creasing, where functions ã j are continuous ( j = 1,2). Then there exists a sequence of integrable functions ( f i) and disjoint rectangles
Iβ1(si)(ui,1) × Iβ2(si)(ui,2) ∈ Iβ1(si) × Iβ2(si) such that

f =
∞∑

i=0

f i,

‖ f0‖∞ � Cβλ, ‖ f0‖1 � 3‖ f ‖1, and

supp f i ⊂ Iβ1(si)(ui,1) × Iβ2(si)(ui,2)

for some si � 1, ui ∈ T2 (i ∈ P). Moreover,
∫
T2 f i(x)dx = 0 (i � 1) and for

F :=
∞⋃

i=1

(
Iβ1(si)(ui,1) × Iβ2(si)(ui,2)

)
we have mes(F ) � ‖ f ‖1/λ.

Proof. Let s1 := 1 and

Ω1 :=
{

J = J1 × J2 ∈ Iβ1(s1) × Iβ2(s1): mes( J )−1
∫ ∣∣ f (x)

∣∣dx > λ

}
.

J
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Since, for each J ∈ Ω1, we have

mes( J )−1 = 2β1(1)+β2(1)

4π2
,

then we also have

λ < mes( J )−1
∫
J

∣∣ f (x)
∣∣dx � 2β1(1)+β2(1) 1

4π2

∫
T2

∣∣ f (x)
∣∣dx < 2β1(1)+β2(1)λ � Cβλ.

Let s2 := inf{s ∈ [s1,+∞):
∑2

j=1 |β j(s) − β j(s1)| � 1}. Recall that the function ã is continuous, and β(x) = �log2 ã(x)� is
monotone increasing and continuous from the right with respect to its both variables. Then we have the following three
cases:

Case 1. β1(s2) = β1(s1) + 1 and β2(s2) = β1(s1),
Case 2. β1(s2) = β1(s1) and β2(s2) = β1(s1) + 1,
Case 3. β1(s2) = β1(s1) + 1 and β2(s2) = β1(s1) + 1.

We decompose the dyadic rectangles contained in

[Iβ1(s1) × Iβ2(s1)] \ { J : J ∈ Ω1}.
That is,

Ω2 :=
{

J ∈ Iβ1(s2) × Iβ2(s2): mes( J )−1
∫
J

∣∣ f (x)
∣∣dx > λ and �K ∈ Ω1 such as J ⊂ K

}
.

Consequently, for all J ∈ Ω2 we get

λ < mes( J )−1
∫
J

∣∣ f (x)
∣∣dx � 4λ.

(In Cases 1 and 2 we even have 2λ, but it makes no problem to take 4λ, instead.) Generally, for N � n � 3

sn := inf

{
s ∈ [sn−1,+∞):

2∑
j=1

∣∣β j(s) − β j(sn−1)
∣∣ � 1

}
.

That is, β j(sn) = β j(sn−1) + 1 for at least one j ( j = 1,2). If for a j this is not valid, then β j(sn) = β j(sn−1). Also take

Ωn :=
{

J ∈ Iβ1(sn) × Iβ2(sn): mes( J )−1
∫
J

∣∣ f (x)
∣∣dx > λ and �K ∈

n−1⋃
i=1

Ωi such as J ⊂ K

}
.

Similarly, as in the case of Ω2 we have that for each J ∈ Ωn the inequalities

λ < mes( J )−1
∫
J

∣∣ f (x)
∣∣dx � 4λ

hold. Denote by ln ∈ N the number of elements of Ωn , and the elements of Ωn by Jn,k (k = 1, . . . , ln , n ∈ N). Since Iβ1(sn) ×
Iβ2(sn) has 2β1(sn)+β2(sn) (disjoint) elements, then ln � 2β1(sn)+β2(sn) (n ∈ N). For an arbitrary set B ⊂ T2 the characteristic
function of B is denoted by 1B . Let

fn,k :=
(

f − mes( Jn,k)
−1

∫
Jn,k

f (x)dx

)
1 Jn,k ,

k = 1, . . . , ln , n ∈ N and F := ⋃∞
n=1

⋃ln
k=1 Jn,k . Since the dyadic rectangles Jn,k are disjoint, then we have the following

decomposition of the function f :
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f =
∞∑

n=1

ln∑
k=1

f 1 Jn,k + f 1T2\F

=
∞∑

n=1

ln∑
k=1

(
f − mes( Jn,k)

−1
∫

Jn,k

f (x)dx

)
1 Jn,k +

∞∑
n=1

ln∑
k=1

[
mes( Jn,k)

−1
∫

Jn,k

f (x)dx

]
1 Jn,k + f 1T2\F

=
∞∑

n=1

ln∑
k=1

fn,k + f0.

This means that f0 = ∑∞
n=1

∑ln
k=1[mes( Jn,k)

−1
∫

Jn,k
f (x)dx]1 Jn,k + f 1T2\F and the functions f i (i = 1,2, . . .) in the statement

of Lemma 4 will be the functions fn,k (k = 1, . . . , ln , n ∈N). supp fn,k ⊂ Jn,k are disjoint dyadic rectangles,

mes( Jn,k) = 4π2

2β1(sn)+β2(sn)
,∫

T2

fn,k(x)dx =
∫

Jn,k

f (x)dx − mes( Jn,k)
−1

∫
Jn,k

f (x)dx · mes( Jn,k) = 0,

‖ fn,k‖1 � ‖ f 1 Jn,k‖1 + mes( Jn,k)
−1

∫
Jn,k

∣∣ f (x)
∣∣dx‖1 Jn,k‖1 = 2‖ f 1 Jn,k‖1.

Consequently,∥∥∥∥∥
∞∑

n=1

ln∑
k=1

fn,k

∥∥∥∥∥
1

� 2
∞∑

n=1

ln∑
k=1

‖ f 1 Jn,k‖1 = 2
∫
F

∣∣ f (x)
∣∣dx � 2‖ f ‖1.

This immediately gives

‖ f0‖1 =
∥∥∥∥∥ f −

∞∑
n=1

ln∑
k=1

fn,k

∥∥∥∥∥
1

� 3‖ f ‖1.

Since F is the disjoint union of the dyadic rectangles Jn,k , then for the two-dimensional Lebesgue measure of F we get

mes(F ) =
∞∑

n=1

ln∑
k=1

mes( Jn,k)

<

∞∑
n=1

ln∑
k=1

1

λ

∫
Jn,k

∣∣ f (x)
∣∣dx

= 1

λ

∫
F

∣∣ f (x)
∣∣dx � 1

λ
‖ f ‖1.

It remains to prove ‖ f0‖ � Cβλ. The construction of Ωn gives the inequality

mes( Jn,k)
−1

∫
Jn,k

∣∣ f (x)
∣∣dx � Cβλ

(in the case of n = 1 we have 2β1(1)+β2(1) , and in the case of n � 2 we have number 4 as constant C ). That is,

‖ f0‖∞ � Cβλ

∥∥∥∥∥
∞∑

n=1

ln∑
k=1

1 Jn,k

∥∥∥∥∥∞
+ ‖ f 1T2\F ‖∞

= Cβλ‖1F ‖∞ + ‖ f 1T2\F ‖∞
� Cβλ + ‖ f 1T2\F ‖∞.
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Let An be the σ -algebra generated by the elements of Iβ1(sn) × Iβ2(sn) (n ∈ N). Then we have an increasing sequence of σ
algebras

A1 ⊂ A2 ⊂ · · · .
The conditional expectation operator of the function f with respect to An at a given point x ∈ T2 is

mes( J )−1
∫
J

f (t)dt,

where J is the unique element of Iβ1(sn) × Iβ2(sn) such that x ∈ J . Since lim+∞ β1 = lim+∞ β2 = +∞, then the martingale
convergence theorem (see e.g. the book of Neveau [9]) gives that this integral mean value converges to f (x) for almost all
x in T2.

Now let x ∈ T2 \ F . Then the construction of the set Ωn gives for each J ∈ Iβ1(sn) × Iβ2(sn) that mes( J )−1
∫

J | f (t)|dt � λ

(for all n ∈N). From the lines above there follows∣∣ f (x)
∣∣ � λ

for almost all x ∈ T2 \ F , so

‖ f 1T2\F ‖∞ � λ, ‖ f0‖∞ � Cβλ.

With this the proof of Lemma 4 is complete. �
For A ∈ N, x ∈ T denote by I1

A(x) = I A(x) + 2π
2A := {y + 2π

2A : y ∈ I A(x)} ∈ IA , I−1
A (x) = I A(x) − 2π

2A := {y − 2π
2A : y ∈ I A(x)} ∈

IA the two adjacent intervals of the one-dimensional interval I A(x). Remark that we mean the addition y + 2π
2A and the

subtraction y − 2π
2A by modulo 2π . That is, for y ∈ T we also have y + 2π

2A , y − 2π
2A ∈ T. Also use the notation I0

A(x) = I A(x).

Also define the integral mean values of the function f ∈ L1(T) at x ∈ T

E A,δ f (x) := 2A

2π

∫
IδA(x)

f (t)dt,

where δ ∈ {−1,0,1}. For A = (A1, A2) ∈N2, f ∈ L1(T2), δ = (δ1, δ2) ∈ {−1,0,1}×{−1,0,1}, IδA(x) = Iδ1
A1

(x1)× Iδ2
A2

(x2), x ∈ T2

set the two-dimensional integral mean values

E A,δ f (x) := 2A1+A2

4π2

∫
IδA(x)

f (t)dt.

In the sequel we suppose that the functions β j(x) = �log2 ã j(x)� are monotone increasing and the functions ã j(x) are
continuous ( j = 1,2). Let δ be as above and f an integrable two variable function. Define the maximal operator E∗

β,δ f :=
supt∈[1,+∞) |Eβ(t),δ f |. With the application of some lemmas below we prove that the maximal operator σ ∗ f = supn |σa(n) f |
is of weak type (L1, L1). In order to have this the first lemma is:

Lemma 5. E∗
β,δ is of weak type (L1, L1). That is, mes{x ∈ T2: E∗

β,δ f (x) > λ} � Cβ‖ f ‖1/λ for every positive λ.

Proof. Apply Lemma 4. Recall its notation. supp f i ⊂ Iβ(si)(ui) = Iβ1(si)(ui,1) × Iβ2(si)(ui,2) (i ∈ P) and F = ⋃∞
i=1 Iβ(si)(ui). Set

9F =
⋃

ε1,ε2∈{−1,0,1}

∞⋃
i=1

Iεβ(si)
(ui).

Obviously, mes(9F ) � 9 mes(F ). Fix a δ ∈ {−1,0,1}2 and let y ∈ T2 \ 9F = 9F and i ∈ P. Then we prove E∗
β,δ f i(y) = 0.

Suppose that 1 � t � si .

If there exists a j ∈ {1,2} such that the one-dimensional intervals I
δ j

β j(t)
(y j) and Iβ j(si)(ui, j) are disjoint, then we have

Iδβ(t)(y) ∩ Iβ(si)(ui) = ∅ and consequently

Eβ(t),δ f i(y) = 2β1(t)+β2(t)

4π2

∫
Iδ (y)

f i(x)dx = 2β1(t)+β2(t)

4π2

∫
Iδ (y)∩Iβ(s )(ui)

f i(x)dx = 0.
β(t) β(t) i
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If, for both j ∈ {1,2}, I
δ j

β j(t)
(y j) ∩ Iβ j(si)(ui, j) �= ∅, then since two one-dimensional intervals are disjoint or one of them

contains the other, then β j(t) � β j(si) (recall that β j is monotone increasing) gives I
δ j

β j(t)
(y j) ⊃ Iβ j(si)(ui, j) ( j = 1,2). That

is, Iδβ(t)(y) ⊃ Iβ(si)(ui) and this immediately gives

Eβ(t),δ f i(y) = 2β1(t)+β2(t)

4π2

∫
Iδ
β(t)(y)

f i(x)dx = 2β1(t)+β2(t)

4π2

∫
Iβ(si )

(ui)

f i(x)dx = 0.

Now, we turn our attention to the other case:
Suppose that t > si .
Eβ(t),δ f i(y) is the integral mean value on the two-dimensional rectangle Iδβ(t)(y) and consequently we integrate function

f i on the set Iδ
β(t)(y) ∩ Iβ(si)(ui). Therefore, if, for either j = 1 or j = 2, I

δ j

β j(t)
(y j) ∩ Iβ j(si)(ui, j) = ∅, then Eβ(t),δ f i(y) = 0.

That is, we can suppose that the intersection is not the empty set. Since β j is monotone increasing, then β j(t) � β j(si) and

this implies I
δ j

β j(t)
(y j) ⊂ Iβ j(si)(ui, j) ( j = 1,2). Thus, I

δ j

β j(t)
(y j) = Iβ j(t)(y j)+ 2πδ j

2β j (t)
gives y j + 2πδ j

2β j (t)
∈ Iβ j(si)(ui, j). Consequently,

if we add − 2πδ j

2β j (t)
to y j + 2πδ j

2β j (t)
(modulo 2π ), then applying the inequality | 2πδ j

2β j (t)
| � 2π

2β j (si )
the result y j will be an element

of the union of the interval Iβ j(si)(ui, j) and its two adjacent intervals. That is, y j ∈ Iβ j(si)(ui, j) ∪ I1
β j(si)

(ui, j) ∪ I−1
β j(si)

(ui, j) for

j = 1,2. This gives

y ∈
⋃

ε1,ε2∈{−1,0,1}
Iεβ(si)

(ui)

therefore y ∈ 9F and this is a contradiction. That is, for all t we have Eβ(t),δ f i(y) = 0 which gives E∗
β,δ f i(y) = 0 on y ∈ 9F .

Now, turn back to the notation of Lemma 4.

mes
{

y ∈ T2: E∗
β,δ f (y) > 2Cβλ

}
� mes

{
y ∈ T2: E∗

β,δ f0(y) > Cβλ
} + mes

{
y ∈ T2: E∗

β,δ

( ∞∑
i=1

f i

)
(y) > Cβλ

}

� mes
{

y ∈ T2: E∗
β,δ f0(y) > Cβλ

} + mes(9F ) + mes

{
y ∈ 9F : E∗

β,δ

( ∞∑
i=1

f i

)
(y) > Cβλ

}

=: I + II + III.

It is quite easy to have that ‖E∗
β,δ f0‖∞ � ‖ f0‖∞ � Cβλ and consequently I = 0. For III by the Markov inequality and the

σ -sublinearity of operator E∗
β,δ we have

III � Cβ

λ

∫
9F

E∗
β,δ

( ∞∑
i=1

f i

)

� Cβ

λ

∫
9F

∞∑
i=1

E∗
β,δ f i = Cβ

λ

∞∑
i=1

∫
9F

E∗
β,δ f i = 0.

That is, mes{E∗
β,δ f > 2Cβλ} � mes(9F ) � 9‖ f ‖1/λ. This completes the proof of Lemma 5. �

The following lemma is concerned with an estimate of the one-dimensional Fejér kernel.

Lemma 6. Let n, A ∈ N, 2A � n < 2A+1 , that is, A = �log2 n�, x, y ∈ T. Then we have

Kn(y − x) � 2
A∑

k=0

2A−2k1⋃
δ∈{−1,0,1} IδA−k(y)(x). (1)

Proof. First, in order to prove Lemma 6 we prove the following inequality for 0 � x.

Kn(x) � 2
A∑

2A−2k1I A−k(0)(x). (2)

k=0
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If x ∈ I A(0), then since the right-hand side of (2) for k = 0 is 2A1I A(0)(x) = 2A and since the left-hand side Kn(x) � n+1
2 � 2A ,

then the inequality (2) is proved in this case.
If x /∈ I A(0), then we have a j ∈ {0, . . . , A − 1} such that 0 � x ∈ I j(0) \ I j+1(0), which gives π

2 j+1 � x < π
2 j . By the

inequality (one can find it in Bary’s book [1])

0 � Kn(x) � π2

2(n + 1)x2

(
0 < |x| � π, n ∈N

)
we have Kn(x) � 22 j+1

2A . What about the right-hand side of (2)? Since 1I j(0)(x) = 1, then we have 2
∑A

k=0 2A−2k1I A−k(0)(x) �
22 j−A+11I j(0)(x) = 22 j−A+1. That is, inequality (2) is proved. Now, we turn our attention to (1). Since the function Kn is

even, then Kn(y − x) = Kn(|y − x|) � 2
∑A

k=0 2A−2k1I A−k(0)(|y − x|). If 1I A−k(0)(|y − x|) = 1, that is, |y − x| ∈ I A−k(0), then

|y − x| < π
2A−k and this gives that x is an element one of the intervals I0

A−k(y), I−1
A−k(y), I1

A−k(y). That is, it is an element of
I A−k(y) or one of its two adjacent intervals belonging to IA−k . Thus, 1⋃

δ∈{−1,0,1} IδA−k(y)(x) = 1,

Kn(y − x) = Kn
(|y − x|) � 2

A∑
k=0

2A−2k1I A−k(0)

(|y − x|) � 2
A∑

k=0

2A−2k1⋃
δ∈{−1,0,1} IδA−k(y)(x).

This completes the proof of Lemma 6. �
Now, we are ready to prove Lemma 2.

Proof of Lemma 2. By (1) we prove the following two-dimensional inequality for n ∈ P2, A = |n| := �log2 n�, f ∈ L1(T2).

|σn f | � C
∑

δ1,δ2∈{−1,0,1}

∑
k1�A1,k2�A2

2−k1−k2 E A−k,δ| f |. (3)

By the help of Lemma 6 we have

∣∣σn f (y)
∣∣ =

∣∣∣∣ 1

π2

∫
T2

f (x)Kn(y − x)dx

∣∣∣∣
� C

∑
δ1,δ2∈{−1,0,1}

∑
k1�A1,k2�A2

2A1−2k1 2A2−2k2

∫
T2

∣∣ f (x)
∣∣1IδA−k(y)(x)dx

= C
∑

δ1,δ2∈{−1,0,1}

∑
k1�A1,k2�A2

2−k1−k2 E A−k,δ| f |(y).

That is, (3) is proved.
For j = 1,2 the functions β j(x) = �log2 ã j(x)� are monotone increasing on [1,+∞) ( j = 1,2) and consequently so do the

functions β j(x) − k j for j = 1,2. We apply Lemma 5.

mes
{

y ∈ T2:
∣∣∣sup

n
σa(n) f (y)

∣∣∣ > λ
}

� mes

{
y ∈ T2: C sup

t∈[1,+∞)

∑
δ1,δ2∈{−1,0,1}

∑
k1�β1(t),k2�β2(t)

2−k1−k2 Eβ(t)−k,δ| f |(y) > λ

}

� mes

{
y ∈ T2: C

∑
δ1,δ2∈{−1,0,1}

∑
k1,k2∈N

2−k1−k2 E∗
β−k,δ| f |(y) > λ

}

� mes

( ⋃
δ1,δ2∈{−1,0,1}

⋃
k1,k2∈N

{
y ∈ T2: 2−k1−k2 E∗

β−k,δ| f |(y) >
Cλ

(|k1| + 1)2(|k2| + 1)2

})

� C
∑

δ1,δ2∈{−1,0,1}

∑
k1,k2∈N

mes

{
y ∈ T2: 2−k1−k2 E∗

β−k,δ| f |(y) >
Cλ

(|k1| + 1)2(|k2| + 1)2

}

� Cβ

∑
δ1,δ2∈{−1,0,1}

∑
k1,k2∈N

(|k1| + 1)2(|k2| + 1)2

λ2k1+k2
‖ f ‖1

� Cβ‖ f ‖1/λ.
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That is, we proved that the maximal operator σ ∗
a f = supn |σa(n) f | is of weak type (L1, L1). Since for each trigonometric

polynomial P we have the everywhere relation limn→∞ σ(a1(n),a2(n)) P = P , then by the standard density argument (see this
principal for instance in [2]) the proof of Lemma 2 is complete. �

Finally, we have to prove Theorem 1, that is, the main result of this paper. The proof comes from Lemma 2 with some
easy calculations.

Proof of Theorem 1. Without the loss of generality a j(n) � 1 ( j = 1,2, n ∈ N) can be supposed. Let L be a positive integer
discussed later. For l,m = 0,1, . . . , L − 1 let some disjoint subsets of N be defined as

Bl,m =
{

n ∈N:
(
a1(n),a2(n)

) ∈
∞⋃

s,t=0

[
2sL+l,2sL+l+1) × [

2tL+m,2tL+m+1)}.

It is clear that these sets are pairwise disjoint and their union is N. Denote the elements of Bl,m by nl,m
1 < nl,m

2 < · · · .

We prove that �log2 a j(n
l,m
k )� � �log2 a j(n

l,m
k+1)� for every k ∈ N, l,m ∈ {0,1, . . . L − 1} and j = 1,2. On the contrary, sup-

pose that �log2 a j(n
l,m
k+1)� < �log2 a j(n

l,m
k )� for some k, l, m and j. Then the definition of Bl,m gives that �log2 a j(n

l,m
k+1)� �

�log2 a j(n
l,m
k )� − L. Thus,

1

2
a j

(
nl,m

k+1

)
� 2�log2 a j(n

l,m
k+1)� � 2�log2 a j(n

l,m
k )�−L � 1

2L
a j

(
nl,m

k

)
.

Since, nl,m
k+1 > nl,m

k , then we have a j(n
l,m
k+1) � αa j(n

l,m
k ) and consequently, also have α � 21−L . This is obviously not possible

for an L large enough. That is, we proved that �log2 a j(n
l,m
k )� is monotone increasing with respect to k ∈ N. Lemma 2 gives

the a.e. convergence

lim
k→∞

σ
a(nl,m

k )
f = f

for each integrable function f and l,m = 0,1, . . . , L − 1. Merging the L2 pieces of subsequences of σa(n) f the proof of
Theorem 1 is complete. �
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