期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:434
On the Polya-Wiman properties of differential operators
Article
Kim, Young-One1,2 
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
关键词: Polya-Wiman theorem;    Zeros of polynomials and entire functions;    Linear differential operators;    Laguerre-Polya class;    Hermite polynomials;    Mittag-Leffler functions;   
DOI  :  10.1016/j.jmaa.2015.09.056
来源: Elsevier
PDF
【 摘 要 】

Let phi(x) = Sigma alpha(n)x(n) be a formal power series with real coefficients, and let D denote differentiation. It is shown that for every real polynomial f there is a positive integer m(0) such that phi(D)(m) f has only real zeros whenever m >= m(0) if and only if alpha(0) = 0 or 2 alpha(0)alpha(2) - alpha(2)(1) < 0, and that if phi does not represent a Laguerre-Polya function, then there is a Laguerre-Polya function f of genus 0 such that for every positive integer m, phi(D)(m) f represents a real entire function having infinitely many nonreal zeros. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_09_056.pdf 392KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次