期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:486
Uniformization by rectangular domains: A path from slits to squares
Article
Solynin, Alexander Yu.1  Vidanage, Nadeesha C.1 
[1] Texas Tech Univ, Dept Math & Stat, Box 41042, Lubbock, TX 79409 USA
关键词: Conformal mapping;    Canonical domain;    Extremal problem;    Rectangle;    Uniformization;   
DOI  :  10.1016/j.jmaa.2020.123927
来源: Elsevier
PDF
【 摘 要 】

Let Sigma(Omega) be the class of functions f(z) = z + a(1)/z + ... univalent on a finitely connected domain Omega, infinity is an element of Omega subset of (C) over bar. By a classical result due to H. Grotzsch, the function f(0) maximizing R-a1 over the class Sigma(Omega) maps Omega onto (C) over bar slit along horizontal segments. Recently, M. Bonk found a similar extremal problem, which maximizer f(1) is an element of Sigma(Omega) maps Omega onto a domain on (C) over bar, whose complementary components are squares. In this note, we discuss a parametric family of extremal problems on the class Sigma(Omega) with maximizers f(m), 0 < m < 1, mapping Omega onto domains on (C) over bar, whose complementary components are rectangles with horizontal and vertical sides and with module m. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_123927.pdf 350KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次