
J. Math. Anal. Appl. 486 (2020) 123927
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Uniformization by rectangular domains: A path from slits to 

squares

Alexander Yu. Solynin ∗, Nadeesha C. Vidanage 1

Department of Mathematics and Statistics, Texas Tech University, Box 41042, Lubbock, TX 79409, 
United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2019
Available online 4 February 2020
Submitted by V. Andriyevskyy

Keywords:
Conformal mapping
Canonical domain
Extremal problem
Rectangle
Uniformization

Let Σ(Ω) be the class of functions f(z) = z + a1
z

+ · · · univalent on a finitely 
connected domain Ω, ∞ ∈ Ω ⊂ C. By a classical result due to H. Grötzsch, the 
function f0 maximizing � a1 over the class Σ(Ω) maps Ω onto C slit along horizontal 
segments. Recently, M. Bonk found a similar extremal problem, which maximizer 
f1 ∈ Σ(Ω) maps Ω onto a domain on C, whose complementary components are 
squares. In this note, we discuss a parametric family of extremal problems on the 
class Σ(Ω) with maximizers fm, 0 < m < 1, mapping Ω onto domains on C, whose 
complementary components are rectangles with horizontal and vertical sides and 
with module m.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let Σ(Ω) denote the class of functions f : Ω → C meromorphic and univalent in the domain Ω ⊂ C with 
∞ ∈ Ω, which are normalized by condition

f(z) = z + a1

z
+ · · · (1)

for z near ∞. This class includes several so-called “canonical mappings” that are mappings onto domains 
whose complementary components have specific, usually simple, geometry. The following two canonical 
mappings are classical. One of them, first studied by P. Koebe in 1931 [7], is a mapping f∅ from Ω onto a 
domain on C whose complementary components are either closed geometric disks or single points. Koebe 
proved in [7] that f∅ exists and is unique in the class Σ(Ω) if Ω is finitely connected. Koebe’s famous 
“Kreisnormierungsproblem” to prove or disprove that such a mapping f∅ exists for all infinitely connected 
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domains remains open and challenging. A partial progress toward its solution was achieved by Z.H. He and 
O. Schramm [4] who proved that f∅ exists for domains Ω having countably many boundary components.

One more canonical mapping, which is more relevant to our study, is a mapping fθ ∈ Σ(Ω), 0 ≤ θ < π, 
from Ω onto the Riemann sphere C slit along rectilinear segments in the direction θ; those are segments 
forming angle θ with the direction of the positive real axis. Its existence, for finitely connected domains Ω, 
was proved by D. Hilbert in 1909 [5] and then, in 1931, Hilbert’s result was extended by G. Grötzsch [2]
for the case of all infinitely connected domains; see Theorems 5.8 and 5.16 in [6]. It is clear that fθ maps Ω
onto C slit along segments in the direction θ if and only if f0(z) = e−iθfθ(eiθz) maps Ω onto C slit along 
horizontal segments. Thus, to study properties of fθ, it would be enough to work with f0. The following 
theorem summarizes important results on existence, uniqueness and certain extremal properties of functions 
in the class Σ(Ω) mapping Ω onto C slit along horizontal segments.

Theorem 1 (see Theorems 5.8 and 5.16 in [6]).

(1) There is a unique function f0 ∈ Σ(Ω), which maximizes the functional

S0(f,Ω) = 2π� a1 (2)

over all functions f(z) = z + a1
z + · · · in the class Σ(Ω).

(2) If Ω is finitely connected, then the function f0 maximizing (2) is the only function in Σ(Ω) which maps 
Ω onto C slit along horizontal segments.

(3) If Ω is infinitely connected, then f0 maps Ω onto C slit along horizontal segments and is the only 
function in Σ(Ω) possessing the following property:
(∗) If L > 0 is large enough and QL(f0) = f0(Ω) ∩ {w : |� w| < L, |
 w| < L}, then the module 

of QL(f0) for the family of locally rectifiable curves in QL(f0) joining the pair of vertical sides of 
QL(f0) is one.

For the definition and properties of the module of a family of curves we refer to Jenkins’ book [6]. As 
an example, we want to mention that, if R is a rectangle with horizontal sides of length a > 0 and vertical 
sides of length b > 0, then the module of the family of curves γ ∈ R joining its vertical sides, also known as 
the module of R, is m = b/a, see Theorem 2.3 in [6].

As part (3) of Theorem 1 suggests and, indeed, as it was shown by example by H. Grötzsch, f0 is not, 
in general, the only function in Σ(Ω) mapping Ω onto C slit along horizontal segments if Ω is infinitely 
connected. But f0 is the only function in Σ(Ω) maximizing the functional in (2). The latter extremal property 
is a key ingredient in the proof of the existence of a function with required mapping properties.

In contrast with Theorem 1, it is not known whether or not a function f∅ mapping Ω onto a circu-
lar domain maximizes any reasonable functional. And this lack of information is a reason why Koebe’s 
Kreisnormierungsproblem remains open.

In the literature, theorems which establish conformal equivalence of a given domain with some “canonical” 
domain, such as Theorem 1 above, are customary called uniformization theorems. Thus, Theorem 1 assures 
that every domain Ω with ∞ ∈ Ω can be uniformized by a domain, which complementary components 
are horizontal slits. In the case of finitely connected domains, a very general uniformization theorem was 
established by A.N. Harrington [3]. We will need one particular case of Harrington’s result (see Theorem 
and Corollary in [3]), which we state as the following proposition.

Proposition 1. [3] Let m > 0 and let Ω be a finitely connected domain with nondegenerate boundary com-
ponents such that ∞ ∈ Ω. Then there is a function fm ∈ Σ(Ω), which maps Ω onto a domain on C whose 
complementary components are rectangles with module m.
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In what follows, a domain Ω ⊂ C, which boundary components are rectangles with horizontal and vertical 
sides, will be called a rectangular domain. Furthermore, if all boundary rectangles of Ω have module m > 0, 
then we say that Ω is a rectangular domain with module m. In particular, a square domain is a rectangular 
domain with module 1; i.e. Ω is a square domain when all its boundary components are squares.

Thus, when m = 1, the function f1 defined in Proposition 1 maps Ω onto a square domain. We note 
that Harrington’s proof in [3] rely on Sard’s theorem on the existence of smooth homotopy paths and on 
Brower’s fixed point theorem and does not use any extremal property of the function f1; for details, see 
[3]. Thus, Harrington’s method cannot be extended to the case of infinitely connected domains. In a recent 
paper [1], in a search for an extremal property of functions mapping Ω onto domains complementary to 
squares, M. Bonk succeeded to find a functional with an extremal function f1. To state his main result, we 
first introduce necessary notations.

Let Ω be finitely connected domain with n nondegenerate boundary components such that ∞ ∈ Ω. For 
f ∈ Σ(Ω), let Kj = Kj(f), j = 1, . . . , n, be complementary components of D = f(Ω). Furthermore, let 
Aj = Aj(f) denote the area of Kj and let Hj = Hj(f) and Vj = Vj(f) denote, respectively, the horizontal 
and the vertical variations of Kj defined as

Hj = max
w∈Kj

�w − min
w∈Kj

�w, Vj = max
w∈Kj


w − min
w∈Kj


w. (3)

With these notations, M. Bonk main result in [1] can be restated in the following form more convenient 
for our purposes.

Theorem 2 (cf. Theorem 1.1 [1]). Let Ω be a finitely connected domain on C̄ with ∞ ∈ Ω having n nonde-
generate boundary components. There is a unique function f1 ∈ Σ(Ω), which maximizes the functional

S1(f,Ω) = 2π� a1 +
n∑

j=1
(Aj −H2

j ) (4)

over all functions f(z) = z + a1
z + · · · in the class Σ(Ω).

The function f1 maximizing (4) is the only function in Σ(Ω), which maps Ω onto a square domain.

In [1], instead of the maximization problem for S1(f, Ω), M. Bonk considers the minimization problem 
for the functional

S⊥
1 (f,Ω⊥) = 2π� a1 +

n∑
j=1

(V 2
j −Aj) (5)

over the class Σ(Ω⊥) of functions f(z) = z + a1
z + · · · univalent in the domain Ω⊥ = {z : −iz ∈ Ω}. 

Switching from the domain Ω to the domain Ω⊥ and from a function f ∈ Σ(Ω) to a function f⊥(z) =
if(−iz) ∈ Σ(Ω⊥), we conclude that S⊥

1 (f⊥, Ω⊥) = −S1(f, Ω). The latter shows that the minimization 
problem for the functional (5) on the class Σ(Ω⊥) is equivalent to the maximization problem (4) on the 
class Σ(Ω). The only reason why we prefer the form (4) is because it allows us to include the function f0 of 
Theorem 1 and the function f1 of Theorem 2 into a family {fm : 0 ≤ m ≤ 1} of functions fm continuously 
depending on the parameter m, 0 ≤ m ≤ 1, where fm ∈ Σ(Ω) maps Ω onto a rectangular domain with 
module m. This family of functions can be considered as a continuous path from a mapping onto a slit 
domain to a mapping onto a conformally equivalent square domain as it is reflected in the title of this 
paper. Moreover, as we will show in the next section, each of the functions fm maximizes a modified version 
of the functional (4).
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2. Extremal problem and uniformization by rectangular domains

Our main result in this paper is the following.

Theorem 3. Let m > 0 be fixed and let Ω be a finitely connected domain on C with ∞ ∈ Ω having n
nondegenerate boundary components. There is a unique function fm ∈ Σ(Ω), which maximizes the functional

Sm(f,Ω) = 2π� a1 +
n∑

j=1
(Aj −mH2

j ) (6)

over all functions f(z) = z + a1
z + · · · in the class Σ(Ω).

The function fm maximizing (6) is the only function in Σ(Ω), which maps Ω onto a rectangular domain 
with module m.

The proof of this theorem consists of two major steps. First, using Harrington’s result stated in Proposi-
tion 1, we show that it is enough to solve maximization problem of Theorem 3 for a particular case when Ω
is already a rectangular domain with module m. Then, in the second part, which is rather technical, we use 
a special metric to find relation between three quantities: coefficient a1 = a1(f), area of the complement 
C \ f(Ω), and horizontal variations Hj = Hj(f). As it was mentioned by Jenkins (see Sections 5.3 – 5.5 in 
[6]), the background ideas of these proofs go back to Koebe, del Possel, and Grötzsch. More recently, similar 
approach was used by He and Schramm in [4] and by Bonk in [1]. In our presentation, we follow closely to 
the lines of the proof of Theorem 2.1 in [1].

Proof. Let Ω be a finitely connected domain as in Theorem 3. By Proposition 1, there is a function

ϕ(z) = z + b1
z

+ · · · (7)

in the class Σ(Ω), which maps Ω onto a rectangular domain Ωm with module m. Since ϕ is a conformal 
bijection between Ω and Ωm it follows that f belongs to the class Σ(Ω) if and only if the function g = f ◦ϕ−1

belongs to the class Σ(Ωm). Using expansions (1) and (7), we find:

g(z) = z + a1 − b1
z

+ · · · (8)

Since f(Ω) = g(Ωm), taking into account (1) and (8), we obtain

Sm(f,Ω) = Sm(g,Ωm) + 2π� b1. (9)

Thus, as equation (9) shows, a function fm ∈ S(Ω) maximizes the functional Sm(f, Ω) if and only if the 
function gm = fm ◦ ϕ−1 ∈ Σ(Ωm) maximizes the functional Sm(g, Ωm). Now, Theorem 3 will follow from 
Proposition 2 stated below. �
Proposition 2. Let Ω ⊂ C be a rectangular domain with module m > 0, which has n ≥ 1 boundary compo-
nents, such that ∞ ∈ Ω. Then, for f ∈ Σ(Ω),

Sm(f,Ω) = 2π� a1 +
n∑

j=1
(Aj −mH2

j ) ≤ 0 (10)

with equality if and only if f is the identity on Ω.
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Fig. 1. Rectangular domain Ω and rectangle R.

Moreover, the function f(z) = z is the only function in Σ(Ω) mapping Ω onto a rectangular domain with 
module m.

Proof. To prove (10), we will estimate certain area and line integrals. Let R = {z : |� z| ≤ r, |
 z| ≤ l} be 
a rectangle on C with large r > 0. This rectangle is shown in Fig. 1, which illustrates notations used in this 
proof. We choose l = r

2
3 so that

l/r → 0 and r/l2 → 0 as r → ∞. (11)

The choice of relations (11) between r and l, which was suggested by M. Bonk in [1], is, in a certain sense, 
crucial for this proof.

We assume that r is large enough and that C̄ \Ω is contained in the interior of the rectangle R. Then, it 
is clear that ∂R ⊂ Ω and J = f(∂R) is a Jordan curve in C. We will use line integral over J , assuming its 
positive orientation, to estimate the area A = A(r) of the region bounded by J up to a term o(1) as r → ∞.

Applying the complex version of the Green’s formula, we obtain

A = 1
2i

∫
J

w̄ dw = 1
2i

∫
∂R

f(z)f ′(z) dz

= 1
2i

∫
∂R

(
z̄ + ā1

z̄
+ ...

)(
1 − a1

z2 + ...
)
dz

= 1
2i

∫
∂R

(
z̄ + ā1

z̄
− a1z̄

z2 + O(|z|−2)
)

dz

= 1
2i

∫
∂R

z̄ dz + 1
2i

∫
∂R

(
ā1z

z̄
− a1z̄

z

)
dz

z
+ o(1).

The above calculation gives the following asymptotic expression for the area A:

A = 4rl +
∫
∂R



(
ā1z

z̄

)
dz

z
+ o(1). (12)

To estimate the integral 
∫
∂R


 
(
ā1z
z̄

)
dz
z , we will integrate over horizontal sides and vertical sides of R

separately. Let L1 = {z = t − il : −r ≤ t ≤ r}, L2 = {z = r + it : −l ≤ t ≤ l}, L3 = {z = −t + il : −r ≤
t ≤ r}, and L4 = {z = −r − it : −l ≤ t ≤ l}. We also put a1 = α + iβ, α, β ∈ R.

Since the area A in the equation (12) is real and positive, we may ignore the imaginary part when 
estimating our integrals. Integrating over horizontal sides of R and simplifying, we get the following:
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�
∫

L1∪L3



(
ā1z

z̄

)
dz

z
= 2�

r∫
−r



(

(α− iβ)(t− il)
t + il

)
dt

t− il

= 2
r∫

−r



(

(α− iβ)(t2 − l2 − 2ilt)
t2 + l2

)
tdt

t2 + l2

= 2
r∫

−r

(
−2αlt + β(l2 − t2)

t2 + l2

)
tdt

t2 + l2

= −4αl
r∫

−r

t2

(t2 + l2)2 dt− 2β
r∫

−r

t(t2 − l2)
(t2 + l2)2 dt

= −4α
(

arctan(r/l) − rl

r2 + l2

)
= −2π� a1 + o(1).

Similarly, integration over the vertical sides leads to the following:

�
∫

L2∪L4



(
ā1z

z̄

)
dz

z
= 2�

l∫
−l



(

(α− iβ)(r + it)
r − it

)
idt

r + it

= 2
l∫

−l



(

(α− iβ)(r2 − t2 + 2irt)
t2 + r2

)
tdt

t2 + r2

= 2
l∫

−l

2αrt + β(t2 − r2)
(t2 + r2)2 tdt

= 4α
(

arctan(l/r) − rl

r2 + l2

)
= o(1).

Combining (12) with asymptotic expressions for the integrals above, we find the following asymptotic 
expression for the area A:

A = 4rl − 2π� a1 + o(1), where o(1) → 0 as r → ∞. (13)

One more formula involving the area A can be obtained by using a special metric ρ(z) ≥ 0, which we 
introduce below. We will use the following notations. Let Rj , j = 1, . . . , n, denote rectangles complementary 
to the domain Ω and let Kj = f(Rj) and Aj = area (Kj). Then, by hj and vj we denote the lengths of 
horizontal and vertical sides of Rj, respectfully. Also, we will use horizontal and vertical variations Hj and 
Vj defined by (3). With these notations, we consider the following metric:

ρ(z) =
{

|f ′(z)| if z ∈ Ω,
Hj

hj
if z ∈ Rj .

(14)

Integrating ρ2(z) over the rectangle R, we obtain:
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∫
R

ρ2(z) dxdy =
∫

R∩Ω

|f ′(z)|2 dxdy +
n∑

j=1

∫
Rj

(
Hj

hj

)2

dxdy

= Area (f(R ∩ Ω)) +
n∑

j=1
H2

j

vj
hj

= Area (f(R ∩ Ω)) +
n∑

j=1
Aj −

n∑
j=1

(Aj −mH2
j )

= A−
n∑

j=1
(Aj −mH2

j ).

Combining this with formula (13), we obtain the following:

∫
R

ρ2(z) dxdy = 4rl − 2π� a1 −
n∑

j=1
(Aj −mH2

j ) + o(1) (15)

= 4rl − Sm(f,Ω) + o(1) as r → ∞.

Next, we will estimate integrals of ρ(z) over the line segments ly = {t +iy : −r ≤ t ≤ r}, where −l ≤ y ≤ l. 
We have ∫

ly

ρ(z) |dz| =
∫

ly∩Ω

|f ′(z)| |dz| +
n∑

j=1

∫
Rj∩ly �=∅

Hj

hj
|dz| (16)

=
∫

ly∩Ω

|f ′(z)||dz| +
n∑

j=1

∫
Rj∩ly �=∅

Hj

hj
dt

=
∫

ly∩Ω

|f ′(z)||dz| +
∑

Rj∩ly �=∅
Hj

≥ � (f(r + iy) − f(−r + iy)) = 2r + O(1/r).

The latter equation implies that

1
2r

⎛⎜⎝∫
ly

ρ(z) dx

⎞⎟⎠
2

≥ 2r + o(1). (17)

Integrating (17) over the interval −l ≤ y ≤ l, we obtain:

1
2r

l∫
−l

⎛⎜⎝∫
ly

ρ(z) dx

⎞⎟⎠
2

dy ≥
l∫

−l

2r dy + o(1) = 4rl + o(1). (18)

Applying Cauchy-Bunyakovsky inequality to the inner integral in (18), we get the following:

4rl + o(1) ≤ 1
2r

l∫ ⎛⎜⎝∫
ρ2(z) dx ·

r∫
−r

dx

⎞⎟⎠ dy (19)

−l ly
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=
l∫

−l

⎛⎜⎝∫
ly

ρ2(z) dx

⎞⎟⎠ dy =
∫
R

ρ2(z) dxdy.

Combining this with (15), we get the following inequality:

4rl + o(1) ≤ 4rl − Sm(f,Ω) + o(1). (20)

Taking the limit in (20) as r → ∞, we conclude that Sm(f, Ω) ≤ 0, as required.
Next, we discuss when equality occurs in (10). If f(z) = z, then a1 = 0, Aj = hjvj , mH2

j = vj
hj

(hj)2 = hjvj
and therefore Sm(f, Ω) = 0 in this case.

Now, suppose that Sm(f, Ω) = 0 for some f ∈ Σ(Ω). Then it follows from (15) that∫
R

ρ2(z) dxdy = 4rl + o(1) as r → ∞, (21)

where ρ(z) is defined by (14).
Let us consider a modified metric ρ̃(z) = ρ(z) + 1. Using (16), we get the following:∫

ly

ρ̃(z) |dz| =
∫
ly

(ρ(z) + 1) dy =
∫
ly

ρ(z) dy + 2r ≥ 4r + O(1/r). (22)

Using estimate (22), we replace ρ(z) by ρ̃(z) in inequalities (17) – (19) and then we find that ρ̃(z) satisfies 
the following inequality: ∫

R

ρ̃2(z) dxdy ≥ 16rl + o(1). (23)

Next, we estimate the nonnegative integral 
∫
R
(1 − ρ(z))2 dxdy. Using equations (21) and (23), we obtain

0 ≤
∫
R

(1 − ρ(z))2 dxdy =
∫
R

(2 + 2ρ2(z) − ρ̃2(z)) dxdy

≤ 8lr + 8lr − 16lr + o(1) = o(1).

Letting r → ∞, we have that 
∫
C(1 −ρ)2(z) dxdy = 0. So it is immediate that ρ(z) = 1 almost everywhere on 

C. It also follows that |f ′(z)| = 1 for all z ∈ Ω. Hence f ′(z) is a constant and with the given normalization 
it follows that f ′(z) = 1 and therefore f(z) is the identity on Ω. This completes the proof of the first part 
of Proposition 2.

It remains to prove uniqueness statement of the second part of Proposition 2. To prove this suppose that 
there exists a function f ∈ Σ(Ω) mapping Ω onto another rectangular domain Ω′ with module m. Then 
the inverse function f−1 is in the class Σ(Ω′) and the relevant coefficients of f(z) and f−1(z) are related 
by a1(f) = −a1(f−1). Since, the domains Ω and Ω′ play the symmetric roles there is no generality loss if 
we assume that � a1 ≥ 0, otherwise, we start with the function f−1 instead of f(z). Since f(Ω) = Ω′ is 
a rectangular domain, we have m = Vj

Hj
for j = 1, ..., n. Therefore, we have Sm(f, Ω) = 2π� a1 ≥ 0 and 

by plugging m = Vj

Hj
and VjHj = Aj in the inequality 10 we have Sm(f, Ω) = 2π� a1 ≤ 0. Hence, we 

have Sm(f, Ω) = 0. Thus, under our assumption, the function f(z) maximizes the functional in (10). As we 
proved before, the latter happens if and only if f(z) is the identity mapping. This completes the proof of 
Proposition 2. �
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M. Bonk’s Theorem 2 for the square domains immediately follows from Theorem 3, when m = 1. In the 
other extreme case, when m = 0, we have the following.

Corollary 1. Let Ω be as in Theorem 3 and let f0 ∈ Σ(Ω) maps Ω onto a domain bounded by slits parallel 
to the real axis. If f ∈ Σ(Ω), then

� a1(f) + 1
2π

n∑
j=1

Aj(f) ≤ � a1(f0). (24)

Equality occurs in (24) if and only if f(z) = f0(z).

The inequality (24) strengthens the classical inequalities; see, for instance, Lemma 5.6 and the proof of 
Lemma 5.7 in [6].

3. Further results and questions

Here we add few observations how the maximal value of the functional Sm(f, Ω) and related extremal 
functions fm ∈ Σ(Ω) depend on the parameter m. Let Sm(Ω) denote the maximal value of Sm(f, Ω) over 
the class Σ(Ω). Then

Sm(Ω) = Sm(fm,Ω) = 2π� a1(fm) = max
f∈Σ(Ω)

Sm(f,Ω). (25)

Proposition 3. With our notations introduced above, the following holds.

(1) If mk ≥ 0 for k = 0, 1, . . ., and mk → m0 as k → ∞, then fmk
(z) → fm0(z) uniformly on compact 

subsets of Ω.
(2) The quantities a1(fm), Aj(fm) and Hj(fm), and therefore the functional Sm(Ω), are continuous func-

tions of m, m ≥ 0.

Proof. This result follows from standard convergence theorems for sequences of normalized univalent func-
tions and uniqueness part of Theorem 3. Indeed, if mk → m0 as k → ∞ but the sequence fmk

(z) does not 
converge to fm0(z) uniformly on compact subsets of Ω, then there is a subsequence, we may assume that it is 
the sequence fmk

(z) itself, which converges uniformly on compact subsets of Ω to some function f̃ ∈ Σ(Ω). 
We may also assume that the sequences of vertices of complementary components Kj = Kj(fmk

) defined in 
Section 1, those are rectangles in our case, also converge to some points on C. Then, one can easily see that 
the limit function f̃(z) maps Ω onto a rectangular domain with module m. But, by the uniqueness part of 
Theorem 3, such a rectangular domain is unique. Since both fm0(z) and f̃(z) are normalized as in (1), we 
must have f̃(z) = fm0(z) and therefore fmk

(z) → fm0(z), proving part (1) of the proposition.
Now, since fmk

(z) → fm0(z) as m → ∞, it follows that a1(fmk
) → a1(fm0) and the sequences of vertices 

of boundary rectangles of the domains fmk
(Ω) converge to appropriate vertices of the boundary components 

of the domain fm0(Ω). The latter immediately implies the continuity properties of the areas Aj(fm) and 
horizontal variations Hj(fm), which, in turn, implies the continuity property of the functional Sm(Ω). �
Theorem 4. The functional Sm(Ω), defined by equation (25), is a strictly decreasing smooth function of m, 
m ≥ 0, which derivative is given by

d

dm
Sm(Ω) = −

n∑
H2

j (fm). (26)

j=1



10 A.Yu. Solynin, N.C. Vidanage / J. Math. Anal. Appl. 486 (2020) 123927
Proof. We proceed as in the proof of Theorem 5.1 in [9]. Same idea was used earlier in some proofs in the 
paper [8]. Since fm(z) is admissible for the maximization problem for the functional Sm+�m(f, Ω), assuming 
�m > 0, we have

lim inf
�m→0

Sm+�m(Ω) − Sm(Ω)
�m

≥ lim inf
�m→0

Sm+�m(fm,Ω) − Sm(Ω)
�m

(27)

= lim
�m→0

2πa1(fm) +
∑n

j=1(Aj(fm) − (m + �m)H2
j (fm)) − Sm(fm,Ω)

�m

= −
n∑

j=1
H2

j (fm).

On the other hand, fm̃(z), with m̃ = m + �m, is admissible for the maximization problem for Sm(Ω). 
Thus, assuming �m < 0 and using continuity property of horizontal variations Hj(fm) established in 
Proposition 3, we have

lim sup
�m→0

Sm+�m(Ω) − Sm(Ω)
�m

≤ lim sup
�m→0

Sm+�m(Ω) − Sm(fm̃,Ω)
�m

(28)

= lim
�m→0

2πa1(fm̃) +
∑n

j=1(Aj(fm̃) − (m + �m)H2
j (fm̃)) − Sm(fm̃,Ω)

�m

= −
n∑

j=1
H2

j (fm).

For �m < 0, we obtain inequalities similar to (27) and (28). Combining all these inequalities, we obtain 
(26). By Proposition 3, for each j = 1, . . . , n, the horizontal variation Hj(fm) is a continuous function of 
m. This, together with formula (26), implies that Sm(Ω) is a smooth strictly decreasing function on the 
interval m ≥ 0. �

Next, we provide an example illustrating results of Theorems 3 and 4 when all calculations can be 
performed explicitly in terms of special functions. Let Ω = D∗ = {z ∈ C : |z| > 1} and let fm ∈ Σ(D∗)
maps D∗ onto a domain exterior to the rectangle R(a, b) = {z : |� z| ≤ a, |
 z| ≤ b} with module m = b/a. 
The function fm(z) can be represented as the composition fm(z) = gk(J(z)), where J(z) is the Joukowski 
function defined as

J(z) = (1/2)(z + 1/z), (29)

and the function gk(ζ), that is a Schwarz-Christoffel integral depending on the parameter k = k(m), 
0 < k < 1, which is given by the following formula:

gk(ζ) = 2k2

ζ/k∫
0

√
1 − t2

1 − k2t2
dt + 2ik2

1/k∫
1

√
t2 − 1

1 − k2t2
dt. (30)

Using (29) and (30), we find the following expansion near z = ∞:

fm(z) = gk(J(z)) = z + 2k2 − 1
z

+ · · · (31)

Therefore,
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Sm(D∗) = 2π(2k2 − 1). (32)

Also, using (30), we find that

H1(fm) = 4k2
1∫

0

√
1 − t2

1 − k2t2
dt, V1(fm) = 4k2

1/k∫
1

√
t2 − 1

1 − k2t2
dt. (33)

From the latter equations, we find the following relation between m and k:

m =

∫ 1/k
1

√
t2−1

1−k2t2 dt∫ 1
0

√
1−t2

1−k2t2 dt
. (34)

Finally, using (26) and (31)–(34), we conclude that

d

dm
Sm(D∗) = 8πk dk

dm
= −H2

1 (k) = −16k4

⎛⎝ 1∫
0

√
1 − t2

1 − k2t2
dt

⎞⎠2

. (35)

The integral in equation (35) can be expressed in terms of complete elliptic integrals as follows:

1∫
0

√
1 − t2

1 − k2t2
dt = E(k) − (1 − k2)K(k)

k2 , (36)

where

K(k) =
1∫

0

dt√
(1 − t2)(1 − k2t2)

, E(k) =
1∫

0

√
1 − k2t2

1 − t2
dt.

From equations (34)-(36), we derive the following formula for the derivative of the quotient of the integrals 
in the equation (34):

dm

dk
= d

dk

⎛⎝∫ 1/k
1

√
t2−1

1−k2t2 dt∫ 1
0

√
1−t2

1−k2t2 dt

⎞⎠ = −π

2
k

(E(k) − (1 − k2)K(k))2 . (37)

We were not able to locate differentiation formula (37) in the accessible literature but it might be known 
to experts in the area of elliptic functions.

We finish this paper with few questions. For the case m = 1, the first and the second of these questions 
were posed in an equivalent form by M. Bonk in [1].

(1) What function minimizes the functional Sm(f, Ω) defined by (6)?
(2) It would be interesting to see whether the functional (6) with m > 0 can be used to give an independent 

existence proof for a conformal map of a finitely connected domain Ω onto a rectangular domain with 
module m without resorting to the Harrington’s result stated in Proposition 1.

(3) The previous problem is open even in the simplest special case, when Ω = D∗. Thus, we restate it 
as follows. Find a variational method to prove that a function fm ∈ Σ(D∗) maximizing the functional 
Sm(f, D∗) maps D∗ onto a rectangular domain C \R(a, b) defined above with a = H1(fm), b = V1(fm), 
where H1(fm) and V1(fm) are defined by formulas (33) and (34).
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(4) Prove that the sum 
∑n

j=1 H
2
j (fm) is a decreasing function for m ≥ 0. This will imply that the functional 

Sm(Ω) is a convex function for m ≥ 0.
(5) We suspect that even stronger result, than stated in (4) is true. Precisely, we conjecture that for each 

j, 1 ≤ j ≤ n, the individual horizontal variation Hj(fm) is a decreasing function for m ≥ 0. For simply 
connected domains Ω, i.e. when n = 1, the monotonicity of H1(fm), and therefore the convexity property 
of Sm(Ω), easily follows from normalization of functions f ∈ Σ(Ω) and from a version of the Schwarz 
lemma applied to this class of functions.

References

[1] M. Bonk, Uniformization by square domains, J. Anal. 24 (1) (2016) 103–110.
[2] H. Grötzsch, Zum Parallelschlitztheorem der konformen Abbildung schlichterunendlich-vielfach zusammenhängender Bere-

iche, Ber. Verh. Sächs. Akad. Wiss. Leipz., Math.-Phys. Kl. 83 (1931) 185–200.
[3] A.N. Harrington, Conformal mappings onto domains with arbitrarily specified boundary shapes, J. Anal. Math. 41 (1982) 

39–53.
[4] Z.X. He, O. Schramm, Fixed points, Koebe uniformization and circle packings, Ann. Math. (2) 137 (1993) 369–406.
[5] D. Hilbert, Zur Theorie der konformen Abbildung, Nachr. Kgl. Ges. Wiss. Gött. Math.-Phys. Kl. (1909) 314–323.
[6] J.A. Jenkins, Univalent Functions and Conformal Mapping, second edition, Springer-Verlag, New York, 1965.
[7] P. Koebe, Kontaktprobleme der Konformen Abbildung, Ber. Verh. Sächs. Akad. Wiss. Leipz., Math.-Phys. Kl. 88 (1936) 

141–164.
[8] A.Yu. Solynin, The dependence of the problem of moduli for a family of some classes of curves on parameters, in: Analytic 

Number Theory and the Theory of Functions, vol. 6, Zap. Nauč. Semin. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 144 
(1985) 136–145.

[9] A.Yu. Solynin, Moduli and extremal metric problems, Algebra Anal. 11 (1) (1999) 3–86; translation in St. Petersburg Math. 
J. 11 (1) (2000) 1–65.

http://refhub.elsevier.com/S0022-247X(20)30089-5/bibABD00B75623472FB40B25774FFB919F7s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibE941E984767603A60989E1E88CAD6F7Cs1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibE941E984767603A60989E1E88CAD6F7Cs1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib0C82142FFADD4FD2A93265D365CEC055s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib0C82142FFADD4FD2A93265D365CEC055s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibF18D0D39AC5C8CD8A972406E11CA1848s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibC98CBFB539A3891D9DB35C17C7C184B3s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib2E54334C0A5CE2E3E5A5845DF3AB3ADAs1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib5EEBC16F9F0EF350625F8C50835C259Bs1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib5EEBC16F9F0EF350625F8C50835C259Bs1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibC5ABACC09E4B4311F25E1E1CA063D1B0s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibC5ABACC09E4B4311F25E1E1CA063D1B0s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bibC5ABACC09E4B4311F25E1E1CA063D1B0s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib99027E0EA011FCA26F7F46F4A0DE2BC4s1
http://refhub.elsevier.com/S0022-247X(20)30089-5/bib99027E0EA011FCA26F7F46F4A0DE2BC4s1

	Uniformization by rectangular domains: A path from slits to squares
	1 Introduction
	2 Extremal problem and uniformization by rectangular domains
	3 Further results and questions
	References


