期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:496
A de Branges-Beurling theorem for the full Fock space
Article
Martin, Robert T. W.1  Shamovich, Eli2 
[1] Univ Manitoba, Winnipeg, MB, Canada
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
关键词: Noncommutative analysis;    Full Fock space;   
DOI  :  10.1016/j.jmaa.2020.124765
来源: Elsevier
PDF
【 摘 要 】

We extend the de Branges-Beurling theorem characterizing the shift-invariant spaces boundedly contained in the Hardy space of square-summable power series to the full Fock space over C-d. Here, the full Fock space is identified as the Non-commutative (NC) Hardy Spaceof square-summable Taylor series in several non-commuting variables. We then proceed to study lattice operations on NC kernels and operator-valued multipliers between vector-valued Fock spaces. In particular, we demonstrate that the operator-valued Fock space multipliers with common coefficient range space form a bounded general lattice modulo a natural equivalence relation. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124765.pdf 480KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次