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We extend the de Branges-Beurling theorem characterizing the shift-invariant spaces 
boundedly contained in the Hardy space of square-summable power series to the full 
Fock space over Cd. Here, the full Fock space is identified as the Non-commutative 
(NC) Hardy Space of square-summable Taylor series in several non-commuting 
variables. We then proceed to study lattice operations on NC kernels and operator-
valued multipliers between vector-valued Fock spaces. In particular, we demonstrate 
that the operator-valued Fock space multipliers with common coefficient range space 
form a bounded general lattice modulo a natural equivalence relation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The classical Hardy space, H2, of the complex unit disk, D = (C)1, is the Hilbert space of all analytic 
functions in the disk with square-summable Taylor series coefficients at the origin (equipped with the �2

inner product of these coefficients). The Hardy algebra, H∞, is the unital Banach algebra of all uniformly 
bounded analytic functions in D with the supremum norm, and this can be identified with the multiplier 
algebra of H2, the algebra of all functions in D which multiply H2 into itself. That is, if h ∈ H∞ and 
f ∈ H2, then h · f ∈ H2. In this way any element h ∈ H∞, or multiplier, defines a bounded multiplication 
operator Mh : H2 → H2, Mhf := hf , and the operator norm of Mh is equal to the supremum norm of h. 
A multiplier h ∈ H∞ is called inner if the multiplication operator Mh is an isometry on H2. In particular 
h(z) = z is an inner function, and the isometry S := Mz, the shift, plays a central role in operator theory 
on Hardy spaces [18,26]. Beurling’s theorem, for example, identifies the closed shift-invariant subspaces of 
H2 as the ranges of inner functions - this is a celebrated and fundamental result in the classical theory 
[6,13]. This result was further extended in a natural way by de Branges: the de Branges - Beurling theorem 
identifies any shift-invariant space of power series boundedly contained in H2 as the operator-range space 
of a bounded multiplier [25].
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A canonical multi-variable extension of the Hardy space H2 is then the full Fock space over Cd, H2
d. 

The Fock space can be defined as the space of all power series in d non-commuting formal variables with 
square-summable coefficients. That is, any f ∈ H2

d is a formal power series:

f = f(z) =
∑
α∈Fd

f̂αz
α,

where z1, · · · , zd are d-non-commuting (NC) formal variables and Fd is the set of all words in the d letters 
{1, · · · , d} (including the empty word ∅ containing no letters). For example, if α = 122112, then the NC 
monomial zα is z1z22z21z2. In this multi-variable setting there are natural d-tuples of left and right NC shifts. 
That is for each of the NC variables zk, the left multiplication operator Lk := ML

zk
is an isometry on H2

d, 
and these have pairwise orthogonal ranges,

L∗
kLj = δk,jI,

so that the d-tuple L := (L1, · · · , Ld) : H2
d ⊗Cd → H2

d defines a row isometry, i.e. an isometry from several 
copies of a Hilbert space into itself. We call this isometry the left free shift. There is an exact version of 
the Wold decomposition in this multi-variable setting due to Popescu and the left free shift is the universal 
(pure) row isometry [21]. Similarly, one can also define isometric right free shifts, Rk := MR

zk
, and these 

are in fact unitarily equivalent to the left free shifts under a self-adjoint transpose unitary, U† on H2
d. NC 

H∞ can then be defined as H∞
d := Alg(I, L)−weak−∗, and this can be viewed as the left NC multiplier 

algebra of H2
d. Similarly R∞

d = Alg(I, R)−weak−∗ is the right NC multiplier algebra. Popescu [20,22] (and 
later Davidson-Pitts [8]) have obtained an exact NC analogue of the Beurling theorem for H2

d:

Theorem. NC Beurling Theorem (Popescu/Davidson-Pitts) Any R-cyclic, R-invariant subspace of H2
d is the 

range of a left inner (isometric) multiplier Θ(L) ∈ H∞
d . Any R-invariant subspace of H2

d is the direct sum 
of R-invariant, R-cyclic subspaces.

In this paper we study operator-valued left multipliers between vector-valued NC Hardy spaces, H2
d ⊗H

and H2
d⊗J. We will show that the set of all operator valued left multipliers, H∞

d ⊗L(·, J) with range contained 
in H2

d ⊗ J can be equipped with natural lattice operations ∧, ∨ so that given any F ∈ H∞
d ⊗ L(F, J) and 

G ∈ H∞
d ⊗ L(G, J), both F ∨ G and F ∧ G are operator-valued left multipliers with range contained in 

H2
d ⊗ J. We further develop factorizations of F ∧G in terms of F ∨G and F ⊕G. The operator-valued left 

multiplier F ∧ G, in particular, is defined via an operator-valued NC version of the de Branges-Beurling 
theorem:

Theorem (NC de Branges-Beurling Theorem (Theorem 4.2)). A linear subspace M ⊆
b.c.

H2
d ⊗ J is boundedly 

contained in H2
d ⊗ J, is (R ⊗ IJ)-invariant, and X := (R ⊗ IJ)|M is a row contraction if and only if there 

is a bounded operator-valued left multiplier F ∈ H∞
d ⊗L (F, J), so that M = Ran (F (L)) endowed with the 

range norm. Moreover, ‖F (L)‖ = ‖e‖, where e : M ↪→ H2
d ⊗ J is the bounded embedding.

A noncommutative de Branges-Beurling theorem in the contractive case (albeit without norm control) 
was obtained by Ball and Bolotnikov in [4, Theorem 5.1] (see also [2,5]). We thank the referee for bringing 
these papers to our attention.

As a consequence of the main results we obtain a modest generalization of a result of Davidson and 
Pitts on right ideals in H∞

d . In Sections 5 and 6 we discuss lattice operations on kernels and multipliers. 
The classical analog of these results is the greatest common divisor (gcd) and least common multiple (lcm) 
of inner functions. We show that modulo a certain natural equivalence relation, the multipliers form a 
bounded general lattice with operations of join and meet. The last section provides a different viewpoint 
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on this lattice. Namely, the final section describes these lattice operations in terms of the category of right 
Hilbert modules over the free algebra.

2. Preliminaries: NC function theory and NC reproducing kernels

The Hardy space H2 of the disk can be equivalently defined as the reproducing kernel Hilbert space
(RKHS) of the positive Szegö kernel, k : D ×D → C:

k(z, w) := 1
1 − zw∗ ; z, w ∈ D,

H2(D) = H(k). Here, recall that a RKHS, H, is any Hilbert space of functions on some set X (say, a 
Hausdorff topological space) so that point evaluation at any x ∈ X is a bounded linear functional. By the 
Riesz Lemma there is then a point evaluation vector, or kernel at x, kx ∈ H so that 〈kx, f〉 = f(x), for any 
f ∈ H. The two-variable function k(x, y) := 〈kx, ky〉H is then a positive kernel function on X in the sense 
that for any finite subset of X, the Gram matrix [k(xi, xj)] ≥ 0 is positive semi-definite. One then writes 
H = H(k), and the classical theory of reproducing kernels due to Aronszajn and Moore shows there is a 
natural bijection between positive kernels on a given set X, and RKHS of functions on that set.

In this paper, the operator-range spaces of NC left or right multipliers can be viewed as non-
commutative reproducing kernel Hilbert spaces (NC-RKHS) of free non-commutative functions defined on 
non-commutative sets. Our use of the theory of NC functions and NC-RKHS is mostly superficial, and so 
we will provide a breviloquent introduction to these concepts and leave details to expert references.

Most NC-RKHS in this paper will be Hilbert spaces of NC functions defined in the NC open unit row-ball:

Bd
N :=

∞�
n=1

Bd
n; Bd

n :=
(
Cn×n ⊗C1×d

)
1 .

That is, each level Bd
n is the set of all strict row contractions on Cn, any Z ∈ Bd

n is a d-tuple Z = (Z1, · · · , Zd)
of n × n matrices, Zk ∈ Cn×n so that Z : Cn ⊗ Cd → Cn defines a strict contraction from d copies of Cn

into one copy:

ZZ∗ = Z1Z
∗
1 + · · ·ZdZ

∗
d < In.

In brief, a free NC function on Bd
N is any function f : Bd

N → �Cn×n which respects the grading, joint 
similarities and direct sums (it is easy to check any NC polynomial has these properties). Locally (level-wise) 
bounded free NC functions in Bd

N are automatically analytic [16, Chapter 7]. Generally speaking, an NC 
set, Ω, is any subset of the NC universe, Cd

N := �∞
n=1 C

n×n ⊗C1×d which is closed under direct sums. One 
writes Ω := �Ωn where Ωn := Ω ∩ Cn×n ⊗ C1×d. An NC-RKHS on Ω is any Hilbert space, H of free NC 
functions in Ω so that point evaluation at any Z ∈ Ωn, �Z , is a bounded linear map from H into the Hilbert 
space (Cn×n, trn). The Hilbert space adjoint of this linear map is the kernel map at Z,

KZ := �∗Z : Cn×n → H,

and the completely positive non-commutative (CPNC) kernel of H is defined as follows: Given any Z ∈
Ωn, W ∈ Ωm, K(Z, W )[·] : Cn×m → Cn×m is given by:

(y,K(Z,W )[vu∗]x)Cn := 〈KZ(yv∗),KW (xu∗)〉H; y, v ∈ Cn, x, u ∈ Cm.

(We will typically write K{Z, y, v} := KZ(yv∗).) For any Z ∈ Ωn, K(Z, Z)[·] is a completely positive map. 
The theory of NC-RKHS is a faithful analogue of the classical RKHS theory and there is again a bijection 
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between CPNC kernels and NC-RKHS of free NC functions on NC sets [3]. In particular the full Fock 
space, H2

d can be identified with the NC Hardy space, the NC-RKHS of all free NC functions in Ω = Bd
N

corresponding to the NC Szegö kernel:

K(Z,W ) :=
∑
α∈Fd

Zα[·](W ∗)α.

As mentioned in the introduction, H∞
d := Alg(I, L)−WOT can then be identified with the left multiplier 

algebra of H2
d. Namely, given any h ∈ H2

d and H ∈ H∞
d , H · h ∈ H2

d, and the linear multiplication operator, 
H(L) := ML

H : H2
d → H2

d, (H(L)h)(Z) = H(Z)h(Z) is bounded with operator norm equal to the supremum 
norm of its symbol, H, over the NC unit ball [24, Theorem 3.1].

2.1. Row contractions and their row isometric dilations

Let X be a row contraction on a Hilbert space, H. We say that a row isometry, X̂ on Ĥ ⊇ H is a row 
isometric dilation of X, if compression to H is a unital homomorphism of Alg(I, X̂) onto Alg(I, X):

PHX̂αPH = XαPH; α ∈ Fd.

Such a dilation, X̂, is called minimal if H is X̂-cyclic, i.e.

Ĥ =
∨

α∈Fd

X̂αH.

Given any row isometric dilation (X̂, Ĥ) of X, observe that if one defines

Ĥ0 :=
∨

α∈Fd

X̂αH, and X̂0 := X̂|
Ĥ0

⊗Cd,

that (X̂0, Ĥ0) is a minimal row isometric dilation of X. Two row isometric dilations of X, (X̂, Ĥ), (X̂ ′, Ĥ′)
are said to be equivalent, if there is an onto isometry U : Ĥ → Ĥ′ so that Uh = h for all h ∈ H ⊆ Ĥ, Ĥ′, 
and

UX̂α = (X̂ ′)αU.

As proven in [21, Theorem 2.1], any row contraction, X on H has a minimal row isometric dilation (X̂, Ĥ)
which obeys the property that H is X̂-coinvariant, and,

X̂∗|H = X∗.

Moreover, any minimal row isometric dilation of X with these properties is unique up to the above notion 
of equivalence.

Lemma 2.2. Let X be a row contraction on the Hilbert space H. Then any two minimal row isometric 
dilations (X̂, Ĥ) and (X̂ ′, Ĥ′) of X are equivalent and H is co-invariant for any minimal row isometric 
dilation of X.

This is easily established as in the proof of [26, Chapter 4, Theorem 4.1]. Namely, given any two minimal 
isometric dilations, X̂, X̃ of X, one verifies that the linear map U : Ĥ → Ĥ′ defined by
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UX̂αh = (X̂ ′)αh; h ∈ H, α ∈ Fd,

defines an onto isometry between the Hilbert spaces of the two minimal dilations.
A row contraction, T = (T1, · · · , Td) : H ⊗Cd → H is said to be pure (or of class C· 0) if:

lim
n→∞

∑
|α|=n

‖T ∗αh‖ = 0.

By [21, Proposition 2.3], T is pure if and only if its minimal row isometric dilation is unitarily equivalent 
to copies of L, or equivalently to copies of R. Here, note that Rk and Lk are unitarily equivalent via the 
idempotent transpose unitary on H2

d:

U†L
α1 = Lα†

1,

where if α = i1 · · · in, then α† = in · · · i1. That is, Rk = U†LkU† for 1 ≤ k ≤ d.

3. Range containment of left multipliers

Theorem 3.1. (NC Douglas Factorization property [15, Theorem 5.5]) Let F (L) ∈ H∞
d ⊗ L (F, J) and 

G(L) ∈ H∞
d ⊗ L (G, J) be left free multipliers so that Ran (F (L)) ⊆ Ran (G(L)). There is a unique left free 

multiplier H ∈ H∞
d (F, G) so that F = GH, Ker (H(L)) ⊆ Ker (F (L)) and

‖H(L)‖2 = inf{λ2 ≥ 0| F (L)F (L)∗ ≤ λ2G(L)G(L)∗}.

Observe that if G(L) is injective, then Ker (H(L)) = Ker (F (L)).

Proof. By the Douglas Factorization Lemma, [11], since Ran (F (L)) ⊆ Ran (G(L)), there is a unique H ∈
L(H2

d ⊗ F, H2
d ⊗ G), so that

F (L) = G(L)H,

and so that H is uniquely determined by the properties that

‖H‖2 = inf{λ2 ≥ 0| F (L)F (L)∗ ≤ λ2G(L)G(L)∗},

Ker (H) = Ker (F (L)), and Ran (H) ⊆ Ker (G(L))⊥. Note that Ker (G(L)) is closed and R ⊗ IG-invariant. 
Setting P := P⊥

Ker(G), this is a R-co-invariant projection, and let T := PR⊗ IG|Ker(G)⊥ . This is a pure row 

contraction with row isometric dilation R ⊗ IG. Similarly, let P ′ be the R-coinvariant projection P⊥
Ker(F ), 

and T ′ := P ′R⊗ IF|Ker(F )⊥ . Since F (L) and G(L) intertwine right free shifts, observe that:

Rk ⊗ IJF (L) = G(L)Rk ⊗ IGH

= F (L)Rk ⊗ IF,

and it follows that

TkH = PRk ⊗ IGH

= HP ′Rk ⊗ IF

= HT ′
k.
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By commutant lifting [21], it follows that there is a H(L) ∈ H∞
d ⊗ L(F, G) with ‖H(L)‖ = ‖H‖, so that 

H(L)∗|Ker(G)⊥ = H∗. In particular PH(L) = PH(L)P = PHP = HP , and

F (L) = G(L)H = G(L)PHP = G(L)H(L). �
4. A de Branges-Beurling theorem for Fock space

Consider F ∈ H∞
d ⊗ L (F, J). Let ML(F ) ⊆ H2

d ⊗ J be the operator range space:

ML(F ) = M (F (L)) := Ran (F (L)) ; ‖F (L)x‖F := ‖P⊥
Ker(F (L))x‖H2

d
.

That is the norm of ML(F ) is defined so that F (L) is a co-isometry from H2
d ⊗F onto its range space, and

ML(F ) ⊆
b.c.

H2
d ⊗ J.

Here the notations ⊆
b.c.

or ⊆
c.c.

will denote bounded/contractive containment, respectively. The Hilbert space 

ML(F ) is the NC-RKHS with the CPNC kernel:

KF (Z,W )[·] := F (Z)K(Z,W )[·] ⊗ IFF (W )∗,

and K(Z, W ) is, as before, the NC Szegö kernel of the full Fock space H2
d. Observe that any left multiplier 

range space, ML(F ) is R⊗ IJ− invariant.

Lemma 4.1. Given any F ∈ H∞
d ⊗ L(F, J), let XF := (R ⊗ IJ)|ML(F ). Then XF is a row contraction, and 

(Xα
F )∗F (L)x = F (L)(Rα ⊗ IF)∗P⊥

Ker(F )x

Proof. Clearly ML(F ) is R⊗ IJ− invariant since

R⊗ IJF (L)x = F (L)(R⊗ IF)x ∈ Ran (F (L)) .

For any x in (H2
d ⊗ F) ⊗Cd,

‖XFF (L) ⊗ Idx‖2
F = ‖(F (L)R⊗ IF)x‖2

F

= ‖P⊥
Ker(F )(R⊗ IF)x‖2

H2
d⊗F

= ‖P⊥
Ker(F )(R⊗ IF)P⊥

Ker(F ) ⊗ Idx‖2
H2

d⊗F (By R-invariance of Ker (F ))

≤ ‖(R⊗ IF)P⊥
Ker(F ) ⊗ Idx‖2

H2
d⊗F

= ‖P⊥
Ker(F ) ⊗ Idx‖2

H2
d⊗F⊗Cd

= ‖F (L) ⊗ Idx‖2
ML(F )⊗Cd .

This proves that XF is a row contraction. The adjoint action of XF is a straightforward calculation:

〈F (L)y,Xα
FF (L)x〉F = 〈PKer(F )⊥y,R

α ⊗ IFx〉H2

= 〈P⊥
Ker(F )(Rα)∗ ⊗ IFP

⊥
Ker(F )y, x〉H2

= 〈F (L)(Rα)∗ ⊗ IFP
⊥
Ker(F )y, F (L)x〉F . �
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Theorem 4.2. (NC de Branges-Beurling) A linear subspace M ⊆
b.c.

H2
d ⊗ J is boundedly contained in H2

d ⊗ J, 
is (R⊗ IJ)-invariant, and X := (R⊗ IJ)|M is a row contraction if and only if there is a bounded operator-
valued left multiplier F ∈ H∞

d ⊗ L (F, J) so that M = ML(F ) and ‖F (L)‖ = ‖e‖, where e : M ↪→ H2
d ⊗ J

is the bounded embedding.

This theorem is inspired by [9, Theorem 3].

Lemma 4.3. If M ⊆ H2
d ⊗ J is boundedly contained in vector-valued NC Hardy space, R⊗ IJ-invariant, and 

X := R⊗ IJ|M⊗Cd is a row contraction, then it is a pure row contraction.

Proof. Recall that a row contraction, T , on H is pure, or of class C· 0, if limn→∞
∑

|α|=n ‖(T ∗)αh‖ → 0, for 
any fixed h ∈ H. Equivalently,

lim
n→∞

‖(T ∗)[n]h‖ = 0,

for any fixed h ∈ H. Here we define:

(T ∗)[n] = (T ∗ ⊗ Id ⊗ In−1)(T ∗ ⊗ Id ⊗ In−2) · · ·T ∗︸ ︷︷ ︸
n terms

,

and (T ∗)[1] = T ∗. Observe that (T ∗)[n] is a contraction for any n ∈ N. We could further identify each (T ∗)[n]

with a contractive linear operator on H⊗ �2(N), e.g. if d = 2, and h = (h1, h2, · · · )T ∈ H ⊗ �2, then

(T ∗)[2]h �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

T ∗
1 T

∗
1 h1

T ∗
1 T

∗
2 h1

T ∗
2 T

∗
1 h1

T ∗
2 T

∗
2 h1
0
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Under this identification (T ∗)[n] SOT→ 0 if and only if T is a pure row contraction.
Let e : M ↪→ H2

d ⊗ J be the bounded (and injective) embedding. Taking adjoints of the equation

eRα ⊗ IJ|M = Rα ⊗ IJe,

yields

(Xα)∗e∗ = e∗(Rα)∗ ⊗ IJ.

It follows that for any h ∈ H2
d ⊗ J,

‖(X∗)[n]e∗h‖2 = ‖(e∗ ⊗ Id ⊗ In)(R∗ ⊗ IJ)[n]h‖2

≤ ‖e‖‖(R∗ ⊗ IJ)[n]h‖2 → 0,

since R ⊗ IJ is pure. More generally, note that since e is injective, e∗ has dense range in M . Hence, given 
any g ∈ M , we can find a sequence (hk) ⊂ H2

d ⊗ J so that gk := e∗hk → g in the norm of M . Given any 
ε > 0, choose K ∈ N so that k > K implies that ‖gk − g‖M < ε. Then,
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‖(X∗)[n]g‖2 ≤ ‖(X∗)[n](g − gK+1)‖2︸ ︷︷ ︸
≤ε2

+ ‖(X∗)[n]e∗hK+1‖2︸ ︷︷ ︸
→0

.

This proves that

lim
n→∞

‖(X∗)[n]g‖2 < ε2,

for any ε > 0 so that ‖(X∗)[n]g‖2 → 0, proving the claim. �
Proof of Theorem 4.2. First suppose that M = ML(F ). Then any x ∈ M has the form x = F (L)f for 
some f ∈ H2

d ⊗ F, and

‖ex‖2
H2

d⊗J = ‖F (L)f‖2
H2

d⊗J

≤ ‖F (L)‖2‖P⊥
Ker(F )f‖2

H2
d⊗F

= ‖F (L)‖2‖x‖2
F .

As proven in Lemma 4.1, ML(F ) is R⊗ IJ-invariant and XF = (R⊗ IJ)|ML(F ) is a row contraction.
Conversely suppose that M ⊆

b.c.
H2

d ⊗ J obeys the hypotheses of the theorem. Let X := R ⊗ J|M . By 

Lemma 4.3, X is pure, so that the minimal row isometric dilation, X̂, of X is unitarily equivalent to copies 
of R, X̂ � R⊗ IF [21, Proposition 2.3]. Let M̂ be the Hilbert space on which X̂ acts. Let U : H2

d⊗F → M̂

be the unitary so that UR⊗ IF(U∗ ⊗ Id) = X̂, and define the bounded operator

F := ePMU : H2
d ⊗ F → H2

d ⊗ J,

where PM is the orthogonal projection of M̂ onto M and e : M ↪→ H2
d ⊗ J is the bounded embedding so 

that ‖F‖ ≤ ‖e‖. Then observe that

FR⊗ IF = ePM X̂(U ⊗ Id)

= eR⊗ IJ|MPM (U ⊗ Id)

= R⊗ IJF.

By [8, Theorem 1.2], F = F (L) ∈ H∞
d ⊗ L (F, J). Observe that UKer (F (L))⊥ = M : If h ∈ H2

d ⊗ F and 
F (L)h = 0, then

0 = Fh = ePMUh,

which happens if and only if PMUh = 0 since e is injective. This proves that UKer (F (L)) ⊆ M⊥. Conversely 
if m⊥ ∈ M⊥ then

FU∗m⊥ = ePMUU∗m⊥ = 0,

so that

Ker (F (L)) = U∗UKer (F (L)) ⊆ U∗M⊥ ⊆ Ker (F (L)) ,

and the claim follows.
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Next, observe that M = ML(F ): Given any g ∈ M , let h := U∗g ∈ H2
d ⊗ F, and note that

(F (L)h)(Z) = (ePMUU∗g)(Z) = g(Z),

for any Z ∈ Bd
N . This shows that M ⊆ ML(F ). Conversely given any F (L)h ∈ ML(F ), for h ∈ H2

d ⊗ F, 
we can assume, without loss in generality that h = P⊥

Ker(F )h so that g = Uh ∈ M . Then, as above,

(F (L)h)(Z) = (ePMUh)(Z) = g(Z),

so that M = ML(F ) as vector spaces.
We claim that the norms of M and ML(F ) are the same, so that M = ML(F ) isometrically: Given any 

g ∈ M = ML(F ),

‖g‖2
M = ‖U∗g‖H2

d⊗F,

since U∗ is unitary, and

‖g‖2
ML(F ) = ‖ePMUU∗g‖2

ML(F )

= ‖F (L)U∗g‖2
ML(F )

= ‖P⊥
Ker(F )U

∗g‖2
H2

d⊗F

= ‖U∗g‖2
H2

d⊗F = ‖g‖2
M .

Finally, by construction, for any x ∈ Ker (F (L))⊥,

‖F (L)x‖2
H2

d⊗J = ‖ePMUx‖2

= ‖eUx‖2,

since UKer (F (L))⊥ = M . This proves that ‖F (L)‖ = ‖e‖. �
Corollary 4.4. If M ⊆

b.c.
H2

d ⊗ J satisfies the conditions of the NC de Branges-Beurling Theorem, then 

M = ML(F ) for

F (L) := ePMU,

where e : M ↪→ H2
d ⊗ J is the bounded embedding, PM : M̂ → M is orthogonal projection, M̂ ⊆ M is the 

Hilbert space of the minimal row isometric dilation X̂F of XF := (R⊗ IJ)|M , and U : H2
d ⊗ F → M̂ is the 

unitary intertwining R⊗ IF and X̂F .

Remark 4.5. Further observe that F (L) = eFPML(F )UF , where UF : H2
d ⊗F → M̂L(F ) intertwines R⊗ IF

with the minimal row isometric dilation of (XF , ML(F )) where UFKer (F (L))⊥ = ML(F ). Hence, if f ∈
Ker (F (L))⊥ then UF f = F (L)f , and UFKer (F (L)) = M̂L(F ) � ML(F ).

Aside: complementary spaces

In [9], de Branges proves results using a ‘complementary viewpoint’. Namely, instead of working with 
shift-invariant subspaces contractively-contained in H2, he studies shift co-invariant subspaces contractively 
contained in H2 which obey an ‘inequality for difference quotients’. Such subspaces are complementary to 
shift-invariant subspaces in the following sense:
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Definition 4.6. ([10], [12, Section 16.9]) Given a Hilbert space H, and a Hilbert space, M , contractively 
contained in H, the complementary space to M is the Hilbert space H ⊆ H defined as the set of all h ∈ H

so that

‖h‖2
H := sup

m∈M

(
‖h + m‖2

H − ‖m‖2
M

)
< +∞.

Lemma 4.7. Suppose that M1, M2 are contractively contained in a Hilbert space, H. Then M1 ⊆
c.c.

M2 if and 

only if their complementary spaces obey H2 ⊆
c.c.

H1.

Definition 4.8. A linear subspace H ⊆ H2(Bd
N ) which is contractively contained in the NC Hardy Space 

and co-invariant for the right free shifts, is said to obey the inequality for (right) difference quotients if:

‖R∗h‖2
H ⊗Cd ≤ ‖h‖2

H − |h(0)|2; h ∈ H .

Lemma 4.9. Let M ⊆
c.c.

H2
d be a Hilbert space contractively contained in the NC Hardy space. Then M is R-

invariant, and R|M is a row contraction, if and only if the complementary space H ⊆
c.c.

H2
d is R-coinvariant 

and obeys the inequality for NC difference quotients.

Proof. Given such a M , suppose h ∈ H . Then,

∞ > ‖h‖2
H = sup

m∈M

(
‖h + m‖2

H2 − ‖m‖2
M

)
≥ sup

m

(
‖h + Rm‖2

H2 − ‖Rm‖2
M

)
≥ sup

(
‖h‖2

H2 − 2Re (〈R∗h,m〉H2) + ‖m‖2
H2 − ‖m‖2

M

)
= sup

(
‖R∗h‖2

H2 + |h(0)|2 − 2Re (〈R∗h,m〉H2) + ‖m‖2
H2 − ‖m‖2

M

)
= sup

m

(
‖R∗h + m‖2

H2 − ‖m‖2
M + |h(0)|2

)
= ‖R∗h‖2

H + |h(0)|2.

This proves that H is R-coinvariant and obeys the inequality for NC difference quotients. The converse is 
similarly easy to verify. �
Right ideals

Davidson and Pitts in [7] proved that there is a lattice isomorphism between the lattice of weak operator 
topology (WOT)-closed right ideals of H∞

d and the closed, R-invariant subspaces of H2
d. The correspondence 

is given by J �→ J · 1. The inverse map is ι(M ) = {G(L) ∈ H∞
d | G(L) · 1 ∈ M}.

Given a row F (L) : H2
d⊗J → H2

d, we define JF to be the algebraic ideal generated by the entries of F (L). 
We will denote by JF the norm closure of JF , i.e., the norm closed right ideal generated by the entries of 
F (L).

Proposition 4.10. Let F (L) : H2
d⊗J → H2

d and G(L) : H2
d⊗K → H2

d be two rows. If Ran (F (L)) ⊂ Ran (G(L), 
then JF ⊂ JG. Conversely, if JF ⊂ JG, then Ran (F (L)) = Ran (G(L)).

Proof. Since Ran (G(L)) ⊂ Ran (F (L)), by the Douglas factorization lemma, we have that F (L) =
G(L)B(L), for some operator-valued multiplier B(L). However, this implies that the entries of F (L) are 
elements of JG.
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Conversely, let us write n = dim (J) and m = dim (K). If JF ⊂ JG, then, for every 1 ≤ j ≤ n, there exist 
{Aij(L)}mi=1 ⊂ H∞

d , all but finitely many of which are zero, such that

Fj(L) =
m∑
i=1

Gi(L)Aij(L).

Since multiplying entries of F (L) by scalars won’t change either JF or Ran (F (L)), we can multiply each 
Fj(L) by 1

2j . This will lead to multiplication of the Aij(L) by the same factor. Thus, the operator matrix 
(perhaps infinite) A(L) = [Aij(L)] defines a bounded operator from H2

d ⊗ J to H2
d ⊗ K. Furthermore, 

F (L) = G(L)A(L) and we conclude that Ran (F (L)) ⊂ Ran (G(L)). �
Remark 4.11. Note that, if n = dim (J) , m = dim (K) < ∞, then Ran (F (L)) ⊂ Ran (G(L)) implies that 
there exists an finite matrix A(L), such that F (L) = G(L)A(L). Therefore, JF ⊂ JG.

5. Lattice operations on CPNC kernels

The results of this section are inspired by [1,19]. One can define two lattice operations, ∨, ∧ on NC 
reproducing kernel Hilbert spaces on the same NC set as follows:

Definition 5.1. Let K, k be two CPNC kernels defined on the same NC set. Hnc(K) ∨Hnc(k), or Hnc(K∨k), 
is the NC-RKHS corresponding to the CPNC kernel:

(K ∨ k)(Z,W ) := K(Z,W ) + k(Z,W ).

The NC-RKHS Hnc(K) ∧Hnc(k) = Hnc(K ∧ k) is then defined as

Hnc(K ∧ k) := Hnc(K)
⋂

Hnc(k),

with the norm:

‖ · ‖2
K∧k := ‖ · ‖2

K + ‖ · ‖2
k.

Observe that Hnc(K ∧ k) embeds contractively in both Hnc(K) and Hnc(k).

Theorem 5.2. Define isometries U∨, U∧ : Hnc(K ∨ k), Hnc(K ∧ k) → Hnc(K) ⊕Hnc(k) by:

U∨(K ∨ k)Z := KZ ⊕ kZ , and
U∧h = h⊕−h.

Then

Hnc(K) ⊕Hnc(k) = U∨Hnc(K ∨ k) ⊕ U∧Hnc(K ∧ k), and

(K ∧ k)Z = 1
2U

∗
∧(KZ ⊕−kz) = U∗

∧(KZ ⊕ 0) = U∗
∧(0 ⊕−kZ).

Proof. The claims are easy to verify. In particular, it is clear that Ran (U∨) ⊆ Ran (U∧)⊥. Conversely if 
f ⊕ g ⊥ Ran (U∨) then for all Z,

0 = 〈KZ ⊕ kZ , f ⊕ g〉
= f(Z) + g(Z).
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This proves that f(Z) = −g(Z) so that f ⊕ g = f ⊕ −f ∈ Ran (U∧), and we conclude that Ran (U∨)⊥ =
Ran (U∧). To prove the identity for (K ∧ k)Z , observe that for any h ∈ Hnc(K ∧ k),

h(Z) = ((K ∧ k)Z)∗ h

= 1
2 (KZ ⊕−kZ)∗ (h⊕−h)

= 1
2 (KZ ⊕ kz)∗ U∧h

= 1
2 (U∗

∧(KZ ⊕ kz))∗ h.

Furthermore,

KZ ⊕ 0 = 1
2(KZ ⊕ kZ) + 1

2(KZ ⊕−kZ),

so that

P∧(KZ ⊕ 0) = 1
2P∧(KZ ⊕−kZ),

and

U∗
∧(KZ ⊕ 0) = 1

2U
∗
∧(KZ ⊕−kZ) = (K ∧ k)Z . �

6. Lattice operations on NC left multipliers

Corollary 6.1. Given operator-valued left NC multipliers, F (L) ∈ H∞
d ⊗ L(F, J) and G(L) ∈ H∞

d ⊗ L(G, J), 
with the same coefficient range space, J, let M := ML(F ) ∧ ML(G). Then there is an operator-valued left 
multiplier H(L) ∈ H∞

d ⊗ L (H, J) with dim(H) ≤ dim(F) + dim(G) so that M = ML(H),

Ran (H(L)) = Ran (F (L))
⋂

Ran (G(L)) ,

and ‖H(L)‖ ≤ max{‖F (L)‖, ‖G(L)‖}.

Proof. This is immediate by the definition of the NC-RKHS ML(F ) ∧ ML(G) and the NC de Branges-
Beurling theorem. �

Let F (L), G(L) be operator-valued left NC multipliers with the same coefficient range space, J, as in the 
statement of the corollary above. Then we can define two new operator-valued left multipliers, F ∨G and 
F ∧G with the same coefficient range space, J as follows.

Definition 6.2. Given F, G, H as above, F∨G := (F, G) ∈ H∞
d ⊗L (F⊕G, J) and F∧G := H ∈ H∞

d ⊗L (H, J), 
where ML(H) := ML(F ) ∧ ML(G) as above.

Corollary 6.3. Given F, G, F ∨G and F ∧G as above,

ML(F ) ∨ ML(G) = ML(F ∨G),

and

ML(F ) ∧ ML(G) = ML(F ∧G).
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In particular,

ML(F ⊕G) = U∨ML(F ∨G) ⊕ U∧ML(F ∧G),

where the isometries U∨, U∧ are as defined in Theorem 5.2. Moreover, in this case, since F ∨ G = (F, G), 
U∨ can be defined on the dense set

Ran ((F ∨G)(L)(F ∨G)(L)∗) ⊆ ML(F ∨G)

by:

U∨(F ∨G)(L)(F ∨G)(L)∗x = U∨ (F (L), G(L))
(
F (L)∗
G(L)∗

)
x

= U∨(F (L)F (L)∗x + G(L)G(L)∗x)

= F (L)F (L)∗x⊕G(L)G(L)∗x; x ∈ H2
d ⊗ J.

Proof. The only thing to prove is the final statement regarding the action of U∨. Calculate: For any x ∈
H2

d ⊗ J,

‖F (L)F (L)∗x⊕G(L)G(L)∗x‖2
F⊕G = ‖F (L)F (L)∗x‖2

F + ‖G(L)G(L)∗x‖2
G

= ‖P⊥
Ker(F )F (L)∗x‖2

H2
d⊗F + ‖P⊥

Ker(G)G(L)∗x‖2
H2

d⊗G

= ‖F (L)∗x‖2
H2

d⊗F + ‖G(L)∗x‖2
H2

d⊗G (Since Ran (A∗) ⊆ Ker (A)⊥.)

=
∥∥∥∥
(
F (L)∗
G(L)∗

)
x

∥∥∥∥
2

H2
d⊗(F⊕G)

=
∥∥∥∥P⊥

Ker((F,G))

(
F (L)∗
G(L)∗

)
x

∥∥∥∥
2

H2
d⊗(F⊕G)

(Same reason as above)

=
∥∥∥∥(F (L), G(L))

(
F (L)∗
G(L)∗

)
x

∥∥∥∥
2

ML(F∨G)
.

This proves that U∨ is an isometry, and it agrees with the previous definition of U∨ since the kernel maps 
for ML(F ) are:

KF
Z = F (L)F (L)∗KZ ,

where K denotes the CPNC Szegö kernel for the NC Hardy space. Also note that for any bounded linear 
map between Hilbert spaces, Ran (A∗) is dense in Ker (A)⊥. �
Remark 6.4. In particular, recall that

U∨ (F (L), G(L))
(
F (L)∗
G(L)∗

)
x =

(
F (L)F (L)∗x
G(L)G(L)∗x

)
.

Hence (
X∗

F 0
0 X∗

G

)(
F (L)F (L)∗x
G(L)G(L)∗x

)
=

(
F (L)(R∗ ⊗ IF)F (L)∗x
G(L)(R∗ ⊗ IG)G(L)∗x

)

=
(
F (L)F (L)∗R∗ ⊗ IJx
G(L)G(L)∗R∗ ⊗ I x

)
,

J
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so that Ran (U∨) is indeed XF ⊕XG-co-invariant.

Remark 6.5. If H = F ∧G, observe that

U∧H(L)x = H(L)x⊕−H(L)x,

so that

Ran (U∧) = ML

(
H
−H

)
,

and that this subspace is XF ⊕XG-invariant. We could have instead defined

U∨ (F (L), G(L))
(
F (L)∗
G(L)∗

)
x := F (L)F (L)∗x⊕−G(L)G(L)∗x,

and U∧h := h ⊕ h. In this case we would still have that

ML(F ⊕G) = Ran (U∨) ⊕ Ran (U∧) ,

and Ran (U∧) = ML
(
H
H

)
.

The lattice of operator-valued left multipliers

Consider the set H∞
d ⊗L(·, J) of all operator-valued left multipliers with range contained in H2

d ⊗ J. We 
define an equivalence relation on H∞

d ⊗ L(·, J) by:

F (L) ∼ G(L) if F (L) = G(L)C(L),

for some invertible operator-valued left multiplier C(L) ∈ H∞
d ⊗L(F, G), where F (L) ∈ H∞

d ⊗L(F, J), and 
G(L) ∈ H∞

d ⊗ L(G, J).

Theorem 6.6. The set H∞
d ⊗ L(·, J)/ ∼ is a bounded general lattice.

Proof. We need to check that the set of all operator-valued left multipliers with common coefficient range 
space J modulo right multiplication by invertible operator-valued left multipliers satisfies the axioms of a 
bounded general lattice.

First, the commutative laws clearly hold: Given any F, G with common coefficient range space J we have 
F ∨G = (F, G) ∼ (G, F ) = G ∨F (via a constant unitary permutation multiplier) and F ∧G ∼ G ∧F . The 
associative laws are also straightforward: F ∨ (G ∨H) = (F, G ∨H) = (F, G, H) = (F ∨G) ∨H. Similarly, 
consider F ∧ (G ∧H). Then, as vector spaces,

ML (F ∧ (G ∧H)) = ML(F )
⋂

ML(G ∧H)

= ML(F )
⋂

ML(G)
⋂

ML(H)

= ML ((F ∧G) ∧H) .

Moreover, the norms are the same:
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‖h‖2
F∧(G∧H) = ‖h‖2

F + ‖h‖2
G∧H

= ‖h‖2
F + ‖h‖2

G + ‖h‖2
H

= ‖h‖2
(F∧G)∧H ,

and the associative law for ∧ follows. The absorption laws are less trivial: Consider F ∧ (F ∨G). Again, as 
vector spaces,

ML (F ∧ (F ∨G)) = ML(F )
⋂

ML(F,G)

= ML(F )
⋂(

ML(F )
⋃

ML(G)
)

= ML(F ).

Now compare the norms:

‖f‖2
F ≤ ‖f‖2

F + ‖f‖2
F∨G︸ ︷︷ ︸

‖f‖2
F∧(F∨G)

≤ ‖f‖2
F + ‖f‖2

F = 2‖f‖2
F ,

since ML(F ) ⊆
c.c.

ML(F, G). By the Douglas factorization property, it follows that if T (L) :=
(F ∧ (F ∨G)) (L), that there is a contractive operator-valued left multiplier C(L), and a bounded operator-
valued left multiplier D(L) of norm at most 

√
2 so that

F (L) = T (L)C(L), and T (L) = F (L)D(L).

One can further check that C(L) = D(L)−1, so that F ∼ F ∧ (F ∨G). To see that C(L) = D(L)−1, consider 
the factorization from Corollary 4.4: We have that

F (L) = eFPFUF , and T (L) = eTPTUT .

Here, eF : ML(F ) ↪→ H2
d⊗J is the bounded embedding with ‖eF‖ = ‖F (L)‖, UF : H2

d⊗F → M̂L(F ) is the 
unitary intertwining R⊗ IF with the minimal row isometric dilation, X̂F of XF := R⊗ IJ|ML(F ), and PF :
M̂L(F ) → ML(F ) is orthogonal projection from the space of the minimal row isometric dilation, M̂L(F )
onto ML(F ). Since the norms of ML(F ) and ML(T ) are equivalent, we further have that the embedding 
e : ML(F ) ↪→ ML(T ) is contractive and invertible and the inverse embedding e−1 : ML(T ) ↪→ ML(F )
has norm at most 

√
2. Observe that

eXα
F = Xα

T e, and e−1Xα
T = Xα

F e−1.

By commutant lifting there exist ‘lifted embeddings’

ê : M̂L(F ) → M̂L(T ), ê∗|ML(T ) = e∗, ‖ê‖ = ‖e‖,

so that

êX̂α
F = X̂α

T ê.

Similarly let ê−1 be the lift of e−1, this has norm at most 
√

2. Consider C := U∗
T êUF , this intertwines the 

right free shifts,
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CRα ⊗ IF = Rα ⊗ ITC,

so that C = C(L) ∈ H∞
d ⊗ L(F, T) is contractive. Further observe that

T (L)C(L) = eTPTUTU
∗
T êUF

= eT PT êPF︸ ︷︷ ︸
=e

UF

= eT e︸︷︷︸
=eF

PFUF = F (L).

Similarly, setting D(L) := U∗
F ê−1UT we obtain that F (L)D(L) = T (L). Finally, we claim that ê−1 = ê−1

so that C(L) = D(L)−1. Indeed we have that

M̂L(F ) =
∨

X̂α
FML(F ),

and similarly for M̂L(T ). Hence, it suffices to check that for any f, g ∈ ML(F ) we have that

〈X̂β
F g, ê−1êX̂α

F f〉 = 〈X̂β
F g, X̂

α
F f〉,

where say α = βγ. Indeed, in this case

〈X̂β
F g, ê−1êX̂α

F f〉 = 〈(X̂γ
F )∗g︸ ︷︷ ︸

∈ML(F )

, ê−1êf〉

= 〈(X̂γ
F )∗g, PF ê−1êPF f〉

= 〈(X̂γ
F )∗g, PF ê−1PT êPF f〉

= 〈(X̂γ
F )∗g, e−1ef〉

= 〈X̂β
F g, X̂

α
F f〉.

Hence T (L) = F (L)C(L) for an invertible left multiplier C(L) = D(L)−1, and this verifies this absorption 
law for the quotient set. Verification of the second absorption law F ∨ (F ∧G) = F is similar and omitted. 
Finally, this is a bounded general lattice since it has a ‘bottom element’, the zero multiplier on H2

d⊗J which 
is an identity for the join operation ∨, and it has a ‘top element’, the constant identity multiplier IH2

d
⊗ IJ, 

which is an identity for the meet operation ∧. �
Factorization of F ∧G

Let eF , eG be the bounded embeddings of ML(F ), ML(G), respectively, into H2
d ⊗ J. Similarly, let 

XF := (R⊗ IJ)|ML(F ), and UF : H2
d ⊗ F → M̂L(F ), where

M̂L(F ) :=
∨

X̂α
FML(F ),

is the Hilbert space of the minimal row-isometric dilation, X̂F , of XF , PF : M̂L(F ) → ML(F ) is orthogonal 
projection, and UF (Rα ⊗ IF) = X̂α

FUF , so that F (L) = eFPFUF , as in the proof of the NC de Branges-
Beurling theorem.
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Theorem 6.7. Given F, G as above, and H(L) = F (L) ∧ G(L) ∈ H∞
d ⊗ L(H, J), there is a left inner 

Γ(L) : H2
d ⊗H → H2

d ⊗ (F ⊕ G) with Ran (Γ(L)) ⊆ Ker ((F ∨G)(L)) so that:

(
H(L)
−H(L)

)
=

(
F (L) 0

0 G(L)

)
Γ(L). (6.1)

Corollary 6.8. If F, G are inner, then so is H = F ∧G.

Proof of Theorem 6.7. Let M := ML
(

H
−H

)
. First observe that M = U∧ML(H). Further observe that 

Ran (P∧), where P∧ = P(
H
−H

) is XF ⊕XG =
(
R⊗ IJ ⊗C2) |ML(F⊕G)-invariant, and that

XF ⊕XG|
ML

(
H
−H

) = X(
H
−H

) =: X.

It follows that X̂F ⊕ X̂G is a row isometric dilation of

X = (R⊗ IJ ⊗C2)
∣∣
ML

(
H
−H

) .

Indeed, for any α ∈ Fd, since P∧ ≤ PF ⊕ PG,

P∧X̂
α
F ⊕ X̂α

GP∧ = P∧(PF X̂
α
FPF ⊕ PGX̂

α
GPG)P∧

= P∧(Xα
F ⊕Xα

G)P∧

= XαP∧,

and this proves that X̂F ⊕ X̂G is a row isometric dilation of X. Setting

M̂ :=
∨

α∈Fd

(
X̂α

F ⊕ X̂α
G

)
ML

(
H
−H

)
,

this is X̂F ⊕ X̂G-invariant, and

X̂ := X̂(
H
−H

) = X̂F ⊕ X̂G|M̂ ,

is the minimal row isometric dilation of X = X(
H
−H

). In particular, it follows by [21, Theorem 2.1] (see also 

Subsection 2.1 and Lemma 2.2), that ML
(

H
−H

)
is X̂-coinvariant, and

X̂∗|
ML

(
H
−H

) = X∗.

Since X̂ is the minimal row isometric dilation of X(
H
−H

) = X, we have, by the NC de Branges-Beurling 

theorem that,
(

H(L)
−H(L)

)
= eF ⊕ eGP∧UH ,

where UH : H2
d⊗H → M̂ is the unitary intertwining R⊗ IH with X̂. This can be factored as follows: Since 

PF ⊕ PG ≥ P∧,
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(
H(L)
−H(L)

)
= (eFPF ⊕ eGPG)P∧UH

= (eFPFUF ⊕ eGPGUG)︸ ︷︷ ︸
=F (L)⊕G(L)

U∗
F ⊕ U∗

GUH︸ ︷︷ ︸
=:Γ

U∗
HP∧UH︸ ︷︷ ︸

=:Q

.

In the above UF : H2
d⊗F → M̂L(F ) is the unitary intertwining R⊗IF with X̂F . Observe that Γ : H2

d⊗H →
H2

d ⊗ (F ⊕ G) is an isometry and that

ΓRα ⊗ IH = (U∗
F ⊕ U∗

G)X̂αUH

= (U∗
F ⊕ U∗

G)(X̂F ⊕ X̂G)αUH

= Rα ⊗ IF⊕GΓ,

so that Γ = Γ(L) is an inner left multiplier. Further observe that,

(F (L), G(L)) Γ(L) = (IH2 ⊗ IJ, IH2 ⊗ IJ)
(
F (L) 0

0 G(L)

)
U∗
F ⊕ U∗

GUH

= (IH2 ⊗ IJ, IH2 ⊗ IJ)
(

eFPF 0
0 eGPG

)
UH .

Since

UH : H2
d ⊗H → M̂ =

∨
X̂α

F ⊕ X̂α
GML(

H
−H

),

it follows that the above becomes:

(F (L), G(L)) Γ(L) = (eF , eG) (PF ⊕ PG)UH︸ ︷︷ ︸
Ran(·)⊆ML

(
H
−H

)
= 0.

This proves that the range of the inner Γ(L) is contained in the kernel of (F ∨G)(L) = (F (L), G(L)). We 
further claim that

(
H(L)
−H(L)

)
=

(
F (L) 0

0 G(L)

)
Γ(L)Q =

(
F (L) 0

0 G(L)

)
Γ(L).

Indeed if h ∈ H2
d ⊗ H belongs to Ker

(
H(L)
−H(L)

)
then UHh ∈ M̂ � ML

(
H
−H

)
(see Remark 4.5) and the 

range space of 
(

H
−H

)
is the range of P∧ so that Qh = U∗

HP∧UHh = 0. Furthermore,

F (L) ⊕G(L)Γ(L)h =
(

eFPF 0
0 eGPG

)
UHh = 0,

since PF ⊕PGM̂ �M = 0. If on the other hand, h ∈ Ker
(

H
−H

)⊥
then Qh = h so that the claim holds. �

A special case: injective multipliers

In this section we assume that F ∈ H∞
d ⊗ L(F, J), and G ∈ H∞

d ⊗ L(G, J) are injective left multipliers.
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Corollary 6.9. Given F ∈ H∞
d ⊗L (F, J), ML(F ) is such that X := R⊗ IJ|ML(F ) is a row isometry if and 

only if Ker (F ) is R⊗ IF-reducing, and,

Ker (F (L)) = H2
d ⊗ F′; F � F′ = {f ∈ F| 1 ⊗ f ∈ Ker (F (L))}.

Lemma 6.10. Suppose that M is boundedly contained in H2
d ⊗ J, (R⊗ IJ)-invariant, and X := (R⊗ IJ)|M

is a row contraction. Then X is a row isometry if and only if M = ML(F ) for an injective F (L) ∈
H∞

d ⊗ L (F, J).

Proof. We have that X := (R⊗ IJ)|M is a pure row isometry by Lemma 4.3. Recall, by the NC de Branges 
- Beurling Theorem, that if

F (L) := ePMU,

where U : H2
d ⊗ F → M̂ is the unitary which intertwines R ⊗ IF with the minimal row isometric dilation, 

X̂, of X, then M = ML(F ). Since we assume that X is its own minimal row isometric dilation, it follows 
that

F (L) = eU,

which is injective since e is injective and U is unitary. Conversely, if F (L) is injective, and X := (R⊗ IJ)|M , 
then for any f ∈ H2

d ⊗ F ⊗Cd,

‖X(F (L) ⊗ Id)f‖2
M = ‖F (L)(R⊗ IF)f‖

= ‖P⊥
Ker(F (L))(R⊗ IF)f‖2

H2
d⊗F

= ‖(R⊗ IF)f‖2
H2

d⊗F

= ‖f‖2
H2

d⊗F⊗Cd ,

so that X is a row isometry. �
Proof of Corollary 6.9. Let M = ML(F ). By the previous lemma we also have that M = ML(G) where 
G(L) ∈ H∞

d ⊗ L (G, J) is injective. Since the CPNC kernels of ML(G) = M = ML(F ) are the same, it 
follows that

F (L)F (L)∗ = G(L)G(L)∗,

so that by Douglas Factorization and commutant lifting, there are contractive operator-valued multipliers, 
C(L) ∈ H∞

d ⊗ L (F, G), and D(L) ∈ H∞
d ⊗ L (G, F) so that F (L) = G(L)C(L) and G(L) = F (L)D(L). In 

particular,

G(L) = G(L)C(L)D(L), and F (L) = F (L)D(L)C(L).

Since G(L) is injective,

C(L)D(L) = IH2
d⊗G,

and

P⊥
Ker(F ) = P⊥

Ker(F )D(L)C(L).
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Note that Ker (C(L)) = Ker (F (L)) since G(L) is injective.
We claim that

D(L) = IH2
d
⊗D; D ∈ L(G,F),

where D is a fixed isometry. First, if D(L) was not an isometry, then since it is contractive, there would be 
some g ∈ H2

d ⊗ G so that ‖D(L)g‖ < ‖g‖. But then,

‖g‖ = ‖C(L)D(L)g‖ ≤ ‖C(L)‖‖D(L)g‖ < ‖C(L)‖‖g‖,

which is not possible since C(L) is contractive. Moreover, repeating this same argument for Z ∈ Bd
N shows 

that the operator-valued NC function D(Z) is an isometry in Cn×n ⊗L (G, F) for any Z ∈ Bd
n. Since C(Z)

is a contractive left inverse of the isometry D(Z), it follows that C(Z) = D(Z)∗. (This is a consequence of 
a general fact: A contraction T is an extension of a partial isometry, V , in the sense that TV ∗V = V , if and 
only if T ∗ is a contractive extension of V ∗, see [14, Lemma 2.3]. In our case, C(Z) is a contractive extension 
of the co-isometry D(Z)∗ so that C(Z)∗ must be a contractive extension of D(Z), which is an isometry and 
hence has no non-trivial contractive extensions. That is, C(Z)∗ = D(Z), and C(L)∗ = D(L).)

Further note that D(Z) can be viewed as an operator-valued NC function, i.e. it is graded and preserves 
direct sums and joint similarities, if one conjugates the point evaluations by certain unitary permutation 
matrices [17, pp. 65–66], [23, p. 38]. However, by the difference-differential calculus for NC functions, this 
would imply that

D

(
Z X

W

)
=

(
D(Z) ΔD(Z,W )[X]

D(W )

)

= C

(
Z X

W

)∗
=

(
C(Z) ΔC(Z,W )[X]

C(W )

)∗

=
(

C(Z)∗ 0
ΔC(Z,W )[X]∗ C(W )∗

)
.

It follows that ΔD(Z, W )[X] ≡ 0 for any Z, W, X, and it follows from Taylor-Taylor series expansions that 
D(Z) = In⊗D, D := D(0) ∈ L (G, F) for Z ∈ Bd

n is constant-valued [16, Chapter 7]. Moreover, by previous 
calculation, D = D(0) ∈ L (G, F) is an isometry.

Now we claim that Ker (F )⊥ = Ran (I ⊗D). First consider h = (I ⊗D)y. Applying the same argument, 
as above, we see that C(L)∗ = (I ⊗ D)∗. Since Ker (F ) = Ker (C(L)), we immediately conclude that 
Ker (F )⊥ = Ran (I ⊗D). In conclusion,

Ker (F (L)) = H2
d ⊗ Ran (D) ,

and this completes the proof. �
Theorem 6.11. If F, G are injective, then so is H := F ∧G and

(
H(L)
−H(L)

)
=

(
F (L) 0

0 G(L)

)
Γ(L),

where

Γ(L) : H2
d ⊗H → H2

d ⊗ (F ⊕ G),

is the inner with Ran (Γ(L)) = Ker (F ∨G).
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Proof. If both F, G are injective, it follows that XF := R⊗ IJ|ML(F ) and XG are row isometries. Moreover, 
as before M := ML

(
H
−H

)
= Ran (P∧) is XF ⊕XG-invariant so that

X := (XF ⊕XG)|M = X(
H
−H

),

is a row isometry, and it follows that XH = (R ⊗ IJ)|ML(H) is also a row isometry. By Corollary 6.9 and 
Lemma 6.10, there is an injective H ′ so that ML(H) = ML(H ′) and we can assume, without loss in 
generality that H = H ′ is injective.

By the NC de Branges-Beurling theorem, if UH : H2
d ⊗ H → ML

(
H
−H

)
is the unitary intertwining 

R⊗ IH with X = X(
H
−H

), then

(
H(L)
−H(L)

)
= eF ⊕ eGUH

= eFUF ⊕ eGUG︸ ︷︷ ︸
=F (L)⊕G(L)

(U∗
F ⊕ U∗

G)UH︸ ︷︷ ︸
=Γ(L)

.

As in the proof of Theorem 6.7, Γ(L) : H2
d ⊗ H → H2

d ⊗ (F ⊕ G) is inner. Moreover, as in the proof of 
Theorem 6.7, Γ(L) = U∗

F ⊕ U∗
GUH . If f ⊕ g belongs to Ker ((F,G)), then

0 = (F (L), G(L))
(
f
g

)

= (eF , eG)
(
UF 0
0 UG

)(
f
g

)
,

and it follows that UF f ⊕ UGg ∈ Ran (UH), where Ran (UH) = ML
(

H
−H

)
, since H is injective. It follows 

that Γ = Γ(L) is onto Ker (F ∨G). �
7. Point of view: Hilbert modules

The goal of this section is to describe the operations ∧ and ∨ through the language of Hilbert modules 
and category theory. The ∨ we obtain here is slightly different, but only up-to factoring out the kernel, in 
a sense. Let us call a pair (M , (X1, . . . , Xd)) a pure right Hilbert C〈z1, . . . , zd〉 module, if (X1, . . . , Xd) is 
a pure row contraction. Consider, the category Hilb of all pure right Hilbert C〈z1, . . . , zd〉 modules with 
injective module maps as morphisms. To simplify notations, we will usually omit the tuple of operators and 
speak simply of a pure Hilbert module M .

Let C = (Hilb ↓ H2
d) be the slice category over the Fock space, on which the free algebra acts by the 

right free shifts. Namely, the objects of C are pairs (M , e), where M is a pure Hilbert module and e is 
an embedding of M into H2

d as a right-invariant subspace. The morphisms in C are f : (M , e) → (M ′, e′), 
where f : M → M ′ is an injective module map, such that e = e′ ◦ f .

There are two natural operations on C, the join and the meet. Given two pure Hilbert modules (M1, e1)
and M2, e2), we consider first the direct sum M1 ⊕M2 with the map e = ( e1 e2 ) into H2

d. Observe that this 
is a module map and Ran (e) = Ran (e1) + Ran (e2). However, this map is, in general, not injective, so we 
have Ker (e) that is a submodule of M1⊕M2. Then we get an exact sequence of pure right Hilbert modules

0 Ker (e) M1 ⊕ M2
e

H2
d .

Therefore, set
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(M1, e1) ∨ (M2, e2) = (M1 ∨ M2, e1 ∨ e2) = (Ker (e)⊥ , e|Ker(e)⊥).

Now note that since both e1 and e2 are injective, then a vector (ξ, η) is in Ker (e) if and only if e1ξ = −e2η. 
Hence we consider N = e1M1 ∩ e2M2. Again, by the injectivity of e1 and e2, each defines an isometry 
onto its range endowed with the range norm ‖ejξj‖j = ‖ξj‖j . We endow N with the following norm, if 
ζ = e1ξ = e2η, then ‖ζ‖2

N = ‖ξ‖2
1 + ‖η‖2

2. Note that N is closed with respect to this norm and the maps 
f1(h) = ξ and f2(h) = η are injective and contractive module maps. Thus the map f : N → M1⊕M2 given 
by f(h) = (f1(h), −f2(h))T is an isometric embedding onto Ker (e). Hence we set (M1, e1) ∧ (M2, e2) =
(Ker (e) , e1PM1) = (Ker (e) , −e2PM2) and we get a decomposition of M1⊕M2 as an orthogonal direct sum 
of M1 ∧ M2 and M1 ∨ M2.

Proposition 7.1. The operation ∨ and ∧ endow C with coproducts and products, respectively.

Proof. Let ιj : Mj → M1 ⊕ M2 be the natural embedding, for j = 1, 2. Consider the maps εj : Mj →
M1 ∨ M2 that are defined by εj = P⊥

Ker(e)ιj . Then, for 0 �= ξ ∈ M1, we have ι1(ξ) = (ξ, 0)T and since e1 is 
injective, e(ξ, 0)T = e1ξ �= 0. Thus, P⊥

Ker(e)ι1(ξ) �= 0 and we have that

eε1(ξ) == eP⊥
Ker(e)ι1(ξ) = e1ξ.

The same is true for j = 2. Thus, we get that εj : (Mj , ej) → (M1, e1) ∨ (M2, e2) are morphisms in 
C. Now, if (N , f) is another object in C, with maps θj : (Mj , ej) → (N , f), then fθj = ej = eιj . Set 
θ : M1 ⊕ M2 → N , θ = ( θ1 θ2 ). Thus, fθ = e and we obtain a map θ̃ = θ|Ker(e)⊥ from (M1, e1) ∨ (M2, e2)
to (N , f). Moreover,

fθj = ej = (e1 ∨ e2)εj = fθ̃εj .

Since f is injective, we conclude that θj = θ̃εj . Now it remains to prove uniqueness. Let ϕ : (M1, e1) ∨
(M2, e2) → (N , f) be another map, such that ϕεj = θj . Then ϕεj = θ̃εj . However, ( ε1 ε2 ) is surjective and 
thus ϕ = θ̃.

Now consider (M1, e1) ∧ (M2, e2). As we have seen, there are two (contractive) homomorphism 
fj : (M1, e1) ∧ (M2, e2) → (Mj , ej), j = 1, 2. Now given (N , g) with two homomorphisms hj : (N , g) →
(Mj , ej), j = 1, 2, set h =

(
h1
−h2

)T

. Then, since g = e1h1 = e2h2, we get that Ran (h) ⊂ Ker (e). Since 

M1 ∧M − 2 = Ker (e), to see that this is a morphism in C, we only need to compute

g = e1h1 = e1 = e1PM1h.

To prove uniqueness, assume that χ : N → Ker (e) is another map, such that g = e1PM1χ. Since e1PM1 is 
injective on Ker (e), we get that χ = h. �
Lemma 7.2. If (M1, e1), (M2, e2) ∈ C, then (M1, e1) ∼= (M2, e2) if and only if Ran (e1) = Ran (e2).

Proof. Of course, if (M1, e1) ∼= (M2, e2), then there exists an isomorphism f : M1 → M2, such that e2f = e1
and thus Ran (e2) = Ran (e1).

Conversely, if Ran (e1) = Ran (e2) = N , then fj : N → Mj , j = 1, 2, are contractive bijections. Hence 
an isomorphism is given by f−1

2 f1. �
Therefore, we can construct a skeleton of the category, by simply considering the ranges of the embeddings. 

By the noncommutative de Branges-Beurling theorem, for every (M , e) ∈ C, there exists a Hilbert space 
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J and a contractive row F (L) ∈ H∞
d ⊗ B(J, C), such that eM = F (L)(H2

d ⊗ J), where, the norm on M
is ‖ · ‖F . The multiplier F is of course non-unique, however, by Corollary 4.4, there is a natural choice for 
such a multiplier, namely F (L) = ePMU . We will call this multiplier the representative of (M , e).

Lemma 7.3. If F (L) ∈ H∞
d ⊗ B(J, C) and G(L) ∈ H∞

d ⊗ B(K, C) are two representatives of (M , e), then 
there exists an invertible multiplier O(L) ∈ H∞

d ⊗B(J, K), such that G(L) = F (L)O(L).

Proof. Contained in the proof of the lattice theorem. �
Due to the lemma, we can make the following definition:

Definition 7.4. For (M , e) we define dim (M , e) = dim (J), where F (L) ∈ H∞
d ⊗B(J, C) is a representative 

of (M , e).

Conversely, given F (L) : H2
d ⊗ J → H2

d, we can define MF = Ker (F (L))⊥ and eF = F (L)|Ker(F )⊥ . Then, 
(MF , eF ) ∈ C. If M ⊂ H2

d is a closed right-invariant subspace, then M is the image of an isometry F . Since 
the right shifts restricted to M form a row isometry, we have that a representative of (M , e) is e itself. 
Hence we make the following definition.

Definition 7.5. Let F (L) : H2
d ⊗ J → H2

d. We say that F is minimal, if F is a representative of (MF , eF ).

By Lemma 7.3, if F and G are minimal with the same range, then G = FO, for some invertible operator-
valued multiplier O(L).

Definition 7.6. Let F (L) : H2
d ⊗ J → H2

d and G(L) : H2
d ⊗K → H2

d, we set

• F ∧G is a representative of (MF , eF ) ∧ (MG, eG).
• F ∨G is a representative of (MF , eF ) ∨ (MG, eG).

Remark 7.7. The lattice properties follow by standard arguments from Proposition 7.1. In particular, it is a 
general fact of category theory that for three objects X, Y, Z in a category with products and co-products.

X × (Y � Z) = (X × Y ) � (X × Z).

Theorem 7.8. Let S be the collection of ranges of minimal multipliers. Then, S is a bounded general lattice.
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