期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:367
Acoustic limit for the Boltzmann equation in the whole space
Article
Liu, Shuangqian
关键词: Acoustic limit;    Boltzmann equation;    Landau equation;    Cauchy problem;   
DOI  :  10.1016/j.jmaa.2009.12.015
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to the following rescaled Boltzmann equation in the acoustic time scaling in the whole space partial derivative(t)F(epsilon) + v.del(x)F(epsilon) = 1/epsilon Q(F(epsilon), F(epsilon)), x epsilon R(3), t < 0, (0.1) with prescribed initial data F(epsilon)vertical bar(r=0) = F(epsilon)(0,x,v), x epsilon R(3). For a solution F(epsilon) (t, x, v) = mu + root mu epsilon f(epsilon) (t, x, v) to the rescaled Boltzmann equation (0.1) in the whole space R(3) for all t >= 0 with initial data F(epsilon)(0, x, v) = F(0)(epsilon)(x, v) = mu + root mu epsilon f(epsilon) (0, x, v), x, v epsilon R(3), our main purpose is to justify the global-in-time uniform energy estimates of f(epsilon)(t, x, v) in c and prove that f(epsilon)(t, x, v) converges strongly to f (t, x, v) whose dynamic is governed by the acoustic system. (C) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_12_015.pdf 233KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次