期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:390
Singular limit of a competition-diffusion system with large interspecific interaction
Article
Hilhorst, Danielle1  Martin, Sebastien1  Mimura, Masayasu2 
[1] Univ Paris 11, Math Lab, CNRS, Fac Sci Orsay,UMR 8628, F-91405 Orsay, France
[2] Meiji Univ, Dept Math, Sch Sci & Technol, Inst Adv Studies Math Sci,Tama Ku, Kawasaki, Kanagawa, Japan
关键词: Competition-diffusion system;    Singular limit problem;    Spatial segregation;    Free boundary problem;   
DOI  :  10.1016/j.jmaa.2012.02.001
来源: Elsevier
PDF
【 摘 要 】

We consider a competition-diffusion system for two competing species; the density of the first species satisfies a parabolic equation together with an inhomogeneous Dirichlet boundary condition whereas the second one either satisfies a parabolic equation with a homogeneous Neumann boundary condition, or an ordinary differential equation. Under the situation where the two species spatially segregate as the interspecific competition rate becomes large, we show that the resulting limit problem turns out to be a free boundary problem. We focus on the singular limit of the interspecific reaction term, which involves a measure located on the free boundary. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2012_02_001.pdf 301KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次