期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:403
Laplace transform and Hyers-Ulam stability of linear differential equations
Article
Rezaei, Hamid1  Jung, Soon-Mo2  Rassias, Themistocles M.3 
[1] Univ Yasuj, Dept Math, Coll Sci, Yasuj 7591474831, Iran
[2] Hongik Univ, Math Sect, Coll Sci & Technol, Sejong 339701, South Korea
[3] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词: Laplace transform;    Laplace transform method;    Differential equation;    Hyers-Ulam stability;    Approximation;   
DOI  :  10.1016/j.jmaa.2013.02.034
来源: Elsevier
PDF
【 摘 要 】

In this paper, we prove the Hyers-Ulam stability of a linear differential equation of the nth order. More precisely, applying the Laplace transform method, we prove that the differential equation y((n)) (t) + Sigma(n-1)(k=0) alpha(k)y((k)) (t) = f(t) has Hyers-Ulam stability, where alpha(k) is a scalar, y and f are n times continuously differentiable and of exponential order, respectively. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_02_034.pdf 378KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次