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a b s t r a c t

In this paper, we prove the Hyers–Ulam stability of a linear differential equation of the nth
order. More precisely, applying the Laplace transformmethod, we prove that the differen-
tial equation y(n)(t)+

n−1
k=0 αky(k)(t) = f (t) has Hyers–Ulam stability, where αk is a scalar,

y and f are n times continuously differentiable and of exponential order, respectively.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In 1940, Ulam [22] posed a problem concerning the stability of functional equations: ‘‘Give conditions in order for a linear
function near an approximately linear function to exist’’.

A year later, Hyers [5] gave an answer to the problem of Ulam for additive functions defined on Banach spaces: Let X1
and X2 be real Banach spaces and ε > 0. Then for every function f : X → Y satisfying

∥f (x + y) − f (x) − f (y)∥ ≤ ε (x, y ∈ X1),

there exists a unique additive function A : X1 → X2 with the property

∥f (x) − A(x)∥ ≤ ε (x ∈ X1).

After Hyers’s result, manymathematicians have extended Ulam’s problem to other functional equations and generalized
Hyers’s result in various directions (see [3,6,10]). A generalization of Ulam’s problem was recently proposed by replacing
functional equationswith differential equations: The differential equationϕ(f , y, y′, . . . , y(n)) = 0 has Hyers–Ulam stability
if for given ε > 0 and a function y such that |ϕ(f , y, y′, . . . , y(n))| ≤ ε, there exists a solution ya of the differential equation
such that |y(t)− ya(t)| ≤ K(ε) and limε→0 K(ε) = 0. If the preceding statement is also true when we replace ε and K(ε) by
α(t) andβ(t), whereα, β are appropriate functions not depending on y and ya explicitly, thenwe say that the corresponding
differential equation has the generalized Hyers–Ulam stability.

Obłoza seems to be the first author who has investigated the Hyers–Ulam stability of linear differential equations (see
[14,15]). Thereafter, Alsina and Ger published their paper [1], which handles the Hyers–Ulam stability of the linear differen-
tial equation y′(t) = y(t): If a differentiable function y(t) is a solution of the inequality |y′(t)−y(t)| ≤ ε for any t ∈ (a, ∞),
then there exists a constant c such that |y(t) − cet | ≤ 3ε for all t ∈ (a, ∞).
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Those previous results were extended to the Hyers–Ulam stability of linear differential equations of first order and higher
order with constant coefficients in [12,20,21] and in [13], respectively. Furthermore, Jung has also proved the Hyers–Ulam
stability of linear differential equations (see [7–9]). Rus investigated the Hyers–Ulam stability of differential and integral
equations using the Gronwall lemma and the technique of weakly Picard operators (see [18,19]). Recently, the Hyers–Ulam
stability problems of linear differential equations of first order and second order with constant coefficients were studied
by using the method of integral factors (see [11,23]). The results given in [8,11,12] have been generalized by Cimpean and
Popa [2] and by Popa and Raşa [16,17] for the linear differential equations of nth order with constant coefficients.

In this paper, we investigate the Hyers–Ulam stability of the linear differential equations by using the Laplace transform
method.

2. Laplace transform and inverse transform

Throughout this paper, F will denote either the real field R or the complex field C. A function f : (0, ∞) → F is said to
be of exponential order if there are constants A, B ∈ R such that

|f (t)| ≤ AetB

for all t > 0. For each function f : (0, ∞) → F of exponential order, we define the Laplace transform of f by

F(s) =


∞

0
f (t)e−stdt.

There exists a unique number −∞ ≤ σ < ∞ such that this integral converges if ℜ(s) > σ and diverges if ℜ(s) < σ .
The number σ is called the abscissa of convergence and denoted by σf . It is well known that |F(s)| → 0 as ℜ(s) → ∞.
Furthermore, f is analytic on the open right half plane {s ∈ C : ℜ(s) > σ } and we have

d
ds

F(s) = −


∞

0
te−st f (t)dt (ℜ(s) > σ).

The Laplace transform of f is sometimes denoted by L(f ). It is well known that L is linear and one-to-one.
Conversely, let f (t) be a continuous function whose Laplace transform F(s) has the abscissa of convergence σf , then the

formula for the inverse Laplace transforms yields

f (t) =
1

2π i
lim
T→∞

 α+iT

α−iT
F(s)estds =

1
2π


∞

−∞

e(α+iy)tF(α + iy)dy

for any real constant α > σf , where the first integral is taken along the vertical line ℜ(s) = α and converges as an improper
Riemann integral and the second integral is used as an alternative notation for the first integral (see [4]). Hence, we have

L(f )(s) =


∞

0
f (t)e−stdt (ℜ(s) > σf )

L−1(F)(t) =
1
2π


∞

−∞

e(α+iy)tF(α + iy)dy (α > σf ).

3. Hyers–Ulam stability of linear differential equations

Recall that the convolution of two integrable functions f , g : (0, ∞) → F is defined by

(f ∗ g)(t) =

 t

0
f (t − x)g(x)dx.

It is easy to check that

L(f ∗ g) = L(f )L(g).

Before stating the main theorem, we need the following two lemmas.

Lemma 3.1. Let

P(s) = α0 + α1s + α2s2 + · · · + αnsn

and

Q (s) = β0 + β1s + β2s2 + · · · + βmsm,

where m, n are nonnegative integers with m < n and αj, βj are scalars. Then there exists an infinitely differentiable function
g : (0, ∞) → F such that

L(g) =
Q (s)
P(s)

(ℜ(s) > σp)
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and

g(i)(0) =


0 (for i = 0, 1, . . . , n − m − 2),
βm/αn (for i = n − m − 1),

where σp = max{ℜ(s) : P(s) = 0}.

Proof. Let ℓ = n − m. Express P(s) as a product of linear factors:

P(s) = αn(s − s1)n1(s − s2)n2 · · · (s − sk)nk

for some complex numbers si and integers ni, i = 1, 2, . . . , k, with n = n1 + · · · + nk. Applying the partial fraction
decomposition of Q (s)/P(s), we obtain

Q (s)
P(s)

=

k
i=1

ni
j=1

λij

(s − si)j
,

where λij is a scalar for each i = 1, 2, . . . , k and j = 1, 2, . . . , ni. Let

hij(t) =
t j−1

(j − 1)!
esit

for every integer i = 1, 2, . . . , k and j = 1, 2, . . . , ni. We then define

g(t) =

k
i=1

ni
j=1

λijhij(t)

and use the linearity of the Laplace transform to get

L(g) = L


k

i=1

ni
j=1

λijhij(t)


=

k
i=1

ni
j=1

λijL(hij) =

k
i=1

ni
j=1

λij

(s − si)j
=

Q (s)
P(s)

for every s with ℜ(s) > σp, where σp = max{ℜ(si) : i = 1, . . . , k}. This completes the first part of our proof.
For the proof of the second part, applying the Maclaurin series expansion of g yields

g(t) = g(0) + g ′(0)t + · · · +
g(n−1)(0)
(n − 1)!

tn−1
+ h(t),

where

h(t) =

∞
i=n

g(i)(0)
i!

t i.

Note that

L(h) =
H(s)
sn+1

for some complex function H , and so

L(g) =
g(0)
s

+
g ′(0)
s2

+
g ′′(0)
s3

+ · · · +
g(n−1)(0)

sn
+

H(s)
sn+1

.

Comparing the above relations, we get

g(0)
s

+
g ′(0)
s2

+
g ′′(0)
s3

+ · · · +
g(n−1)(0)

sn
+

H(s)
sn+1

=
β0 + β1s + · · · + βmsm

α0 + α1s + · · · + αm+ℓsm+ℓ
.

If ℓ ≥ 2, multiply both sides of the above relation by s and then let s → ∞ to get g(0) = 0. If ℓ > 2, multiply both sides of
the above equality by s2 and let s → ∞ to get g ′(0) = 0. Continuing in thisway, we get g(0) = g ′(0) = · · · = g(ℓ−2)(0) = 0.
Finally, multiply both sides of the equality by sℓ and let s → ∞ to get g(ℓ−1)(0) = βm/αn. This completes the proof. �

In what follows, the functions f , y : (0, ∞) → F are assumed to be of exponential order and continuous. If there is no
danger of confusion, we write f (0) and y(0) instead of f (0+) and y(0+), respectively.
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Lemma 3.2. Given an integer n > 1, let f : (0, ∞) → F be a continuous function and let P(s) be a complex polynomial of
degree n. Then there exists an n times continuously differentiable function h : (0, ∞) → F such that

L(h) =
L(f )
P(s)

(ℜ(s) > max{σp, σf }),

where σp = max{ℜ(s) : P(s) = 0} and σf is the abscissa of convergence for f . In particular, it holds that h(i)(0) = 0 for every
i = 0, 1, . . . , n − 1.

Proof. If we take Q (s) = 1 and P(s) = α0 + α1s + · · · + αnsn in Lemma 3.1, then there exists an infinitely differentiable
function g : (0, ∞) → F such that

L(g) =
1

P(s)
(ℜ(s) > σp)

and g(i)(0) = 0 if i = 0, 1, . . . , n − 2 and g(n−1)(0) = 1/αn. If we define h = g ∗ f , then

L(h) = L(g ∗ f ) = L(g)L(f ) =
L(f )
P(s)

.

By Leibniz’s rule for differentiation under the integral sign, we have

h′(t) = g(0)f (t) +

 t

0
g ′(t − x)f (x)dx =

 t

0
g ′(t − x)f (x)dx,

and more generally

h(i)(t) = g(i−1)(0)f (t) +

 t

0
g(i)(t − x)f (x)dx =

 t

0
g(i)(t − x)f (x)dx

for every i = 1, . . . , n − 1. Hence, we get

h(0) = h′(0) = · · · = h(n−1)(0) = 0,

which completes the proof. �

Theorem 3.3. Let α be a scalar. If a function y : (0, ∞) → F satisfies the inequality

|y′(t) + αy(t) − f (t)| ≤ ε (3.1)

for all t > 0 and for some ε > 0, then there exists a solution ya : (0, ∞) → F of the differential equation

y′(t) + αy(t) = f (t) (3.2)

such that

|ya(t) − y(t)| ≤


εt (for ℜ(α) = 0),
(1 − e−ℜ(α)t)ε

ℜ(α)
(for ℜ(α) ≠ 0)

for all t > 0.

Proof. If we define z(t) = y′(t) + αy(t) − f (t) for each t > 0, then we have

L(z) = sL(y) − y(0) + αL(y) − L(f )

and so

L(y) −
y(0) + L(f )

s + α
=

L(z)
s + α

. (3.3)

If we set

ya(t) = y(0)e−αt
+ (E−α ∗ f )(t),

where E−α(t) = e−αt , then ya(0) = y(0) and

L(ya) =
y(0) + L(f )

s + α
=

ya(0) + L(f )
s + α

. (3.4)

Hence, we get

L(y′

a(t) + αya(t)) = sL(ya) − ya(0) + αL(ya) = L(f ).
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Since L is one-to-one, it follows that y′
a(t) + αya(t) = f (t). Thus, ya is a solution of (3.2). Applying (3.3) and (3.4) and

consideringL(E−α ∗z) = L(z)/(s+α), we obtainL(y)−L(ya) = L(E−α ∗z) and consequently y(t)−ya(t) = (E−α ∗z)(t).
In view of (3.1), it holds that |z(t)| ≤ ε and it follows from the definition of the convolution that

|y(t) − ya(t)| = |(E−α ∗ z)(t)| ≤ εe−ℜ(α)t
 t

0
eℜ(α)xdx,

which completes the proof. �

The following theorem is our main theorem, in which we investigate the Hyers–Ulam stability problem of linear
differential equations of nth order by using the Laplace transform method.

Theorem 3.4. Let α0, α1, . . . , αn−1 be scalars, where n is an integer larger than 1. Then there exist a constant M > 0 such that
for every function y : (0, ∞) → F satisfying the inequalityy(n)(t) +

n−1
k=0

αky(k)(t) − f (t)

 ≤ ε (3.5)

for all t > 0 and for some ε > 0, there exists a solution ya : (0, ∞) → F of the differential equation

y(n)(t) +

n−1
k=0

αky(k)(t) = f (t) (3.6)

such that

|ya(t) − y(t)| ≤ εM
eαt

α

for all t > 0 and for any α > max{0, σp, σf }, where σp is defined in (3.9).

Proof. Applying integration by parts repeatedly, we may derive

L

y(n)

= snL(y) −

n
j=1

sn−jy(j−1)(0)

for any positive integer n. Let αn = 1. In view of the preceding formula, we see that a function y0 is a solution of (3.6) if and
only if

L(f ) =

n
k=0

αkskL(y0) −

n
k=1

αk

k
j=1

sk−jy(j−1)
0 (0)

=

n
k=0

αkskL(y0) −

n
j=1

n
k=j

αksk−jy(j−1)
0 (0)

= Pn,0(s)L(y0) −

n
j=1

Pn,j(s)y
(j−1)
0 (0), (3.7)

where the polynomials Pn,j are determined by

Pn,j(s) = αj + αj+1s + αj+2s2 + · · · + αn−1sn−j−1
+ αnsn−j

=

n
k=j

αksk−j

for j = 0, 1, . . . , n.
Let us define

h(t) = y(n)(t) +

n−1
k=0

αky(k)(t) − f (t)

for all t > 0. Then, similarly as in (3.6) and (3.7), we obtain

L(h) = Pn,0(s)L(y) −

n
j=1

Pn,j(s)y(j−1)(0) − L(f ).
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Hence, we get

L(y) −
1

Pn,0(s)


n

j=1

Pn,j(s)y(j−1)(0) + L(f )


=

L(h)
Pn,0(s)

. (3.8)

Let σf be the abscissa of convergence for f , let s1, s2, . . . , sn be the roots of the polynomial Pn,0, and let

σp = max{ℜ(sk) : k = 1, 2, . . . , n}. (3.9)

For any s with ℜ(s) > max{σp, σf }, we set

G(s) =
1

Pn,0(s)


n

j=1

Pn,j(s)y(j−1)(0) + L(f )


. (3.10)

By Lemma 3.2, there exists an n times continuously differentiable function f0 such that

L(f0) =
L(f )
Pn,0(s)

(3.11)

for all swith ℜ(s) > max{σp, σf } and

f0(0) = f ′

0(0) = · · · = f (n−1)
0 (0) = 0.

For j = 1, 2, . . . , n, we note that

Pn,j(s)
Pn,0(s)

=
1
sj

−
α0 + α1s + · · · + αj−1sj−1

sjPn,0(s)
(3.12)

for every swithℜ(s) > max{0, σp}. Applying Lemma 3.1 for the case ofQ (s) = α0+α1s+· · ·+αj−1sj−1 and P(s) = sjPn,0(s),
we can find an infinitely differentiable function gj such that

L(gj) =
α0 + α1s + · · · + αj−1sj−1

sjPn,0(s)
(3.13)

and

gj(0) = g ′

j (0) = · · · = g(n−1)
j (0) = 0.

Let

fj(t) =
t j−1

(j − 1)!
− gj(t) (3.14)

for j = 1, 2, . . . , n. Then we have

f (i)
j (0) =


0 (for i = 0, 1, . . . , j − 2, j, j + 1, . . . , n − 1),
1 (for i = j − 1).

If we define

ya(t) =

n
j=1

y(j−1)(0)fj(t) + f0(t),

then the conditions for fj and f0 imply that

y(i)
a (0) = y(i)(0)

for every i = 0, 1, . . . , n − 1. Moreover, it follows from (3.10) to (3.14) that L(ya) = G(s) and hence

L(ya) =
1

Pn,0(s)


n

j=1

Pn,j(s)y(j−1)
a (0) + L(f )


(3.15)

for each swith ℜ(s) > max{0, σp, σf }.
Now, (3.7) implies that ya is a solution of (3.6). Moreover, by (3.8) and (3.15), we have

L(y) − L(ya) =
L(h)
Pn,0(s)
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and so

|y(t) − ya(t)| =

L−1


L(h)
Pn,0(s)


for t > 0. By the definition of h and (3.5), it holds that |h(t)| ≤ ε for every t > 0 and so

|L(h)| ≤


∞

0
|e−st

||h(t)|dt ≤
ε

ℜ(s)
(3.16)

for all swith ℜ(s) > 0.
Finally, it follows from the formula for the inverse Laplace transform that

|y(t) − ya(t)| =

L−1


L(h)
Pn,0(s)


=

1
2π

 ∞

−∞

e(α+iy)t L(h)(α + iy)
Pn,0(α + iy)

dy


≤
1
2π


∞

−∞

eαt ε

α

1
|Pn,0(α + iy)|

dy by (3.16)

≤
ε

2πα
eαt


∞

−∞

1
|Pn,0(α + iy)|

dy

≤ εM
eαt

α

for all t > 0 and any α > max{0, σp, σf }, where

M =
1
2π


∞

−∞

1
|Pn,0(α + iy)|

dy < ∞

because n is an integer larger than 1. �

Since eαt/α has its minimum at α = 1/t , it holds that

eαt

α
≥ et

either for all t > 0 (if max{0, σp, σf } = 0) or for all sufficiently small t > 0 with 1/t > max{0, σp, σf }. Thus, we have the
following corollaries.

Corollary 3.5. Assume that max{0, σp, σf } = 0. Then there exists a constant M > 0 such that for every function y : (0, ∞) → F
satisfying the inequality (3.5) for all t > 0 and for some ε > 0, there exists a solution ya : (0, ∞) → F of the differential
equation (3.6) such that

|ya(t) − y(t)| ≤ εMet

for all t > 0, where σp is defined in (3.9).

Corollary 3.6. Assume that max{0, σp, σf } > 0. Then there exists a constant M > 0 such that for every function y : (0, ∞) → F
satisfying the inequality (3.5) for all t > 0 and for some ε > 0, there exists a solution ya : (0, ∞) → F of the differential
equation (3.6) such that

|ya(t) − y(t)| ≤ εMet

for all t with 0 < t < 1/max{0, σp, σf }.
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