期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:455
Revisiting the Hahn-Banach theorem and nonlinear infinite programming
Article
Montiel Lopez, P.1  Ruiz Galan, M.2 
[1] Univ Granada, Dept Sci, Ctr Estudios Superiores Inmaculada, C Toaguina Eguaras 144, Granada 18018, Spain
[2] Univ Granada, Dept Appl Math, ETS Ingn Edificac, C Severo Ochoa S-N, E-18071 Granada, Spain
关键词: Hahn-Banach theorem;    Nonlinear programming;    Lagrange multipliers;    Karush-Kuhn-Tucker theorem;    Fritz John theorem;    Infsup-convexity;   
DOI  :  10.1016/j.jmaa.2017.06.007
来源: Elsevier
PDF
【 摘 要 】

The aim of this paper is to state a sharp version of the Konig supremum theorem, an equivalent reformulation of the Hahn-Banach theorem. We apply it to derive statements of the Lagrange multipliers, Karush-Kuhn-Tucker and Fritz John types, for nonlinear infinite programs. We also show that a weak concept of convexity coming from minimax theory, infsup-convexity, is the adequate one for this kind of results. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_06_007.pdf 339KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次