期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:326
The energy of graphs and matrices
Article
Nikiforov, Vladimir
关键词: graph energy;    graph eigenvalues;    singular values;    matrix energy;    Wigner's semicircle law;   
DOI  :  10.1016/j.jmaa.2006.03.072
来源: Elsevier
PDF
【 摘 要 】

Given a complex m x n matrix A, we index its singular values as sigma(1) (A) >= sigma(2) (A) >= (...) and call the value epsilon (A) = sigma(1) (A) + sigma(2) (A) + (...) the energy of A, thereby extending the concept of graph energy, introduced by Gutman. Let 2 <= m <= n, A be an m x n nonnegative matrix with maximum entry alpha, and parallel to A parallel to(1) >= n alpha. Extending previous results of Koolen and Moulton for graphs, we prove that epsilon(A) <= parallel to A parallel to(1)/root(m-1)(parallel to A parallel to(2)(1)/mn) <= alpha root n(m + root m)/2. Furthermore, if A is any nonconstant matrix, then epsilon(A) >= sigma(1) (A) + parallel to A parallel to(2)(2)-sigma(2)(1)(A)/sigma(2)(A). Finally, we note that Wigner's semicircle law implies that epsilon(G) = (4/3 pi + o(1))n(3/2) for almost all graphs G. (c) 2006 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2006_03_072.pdf 93KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次