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Abstract

Given a complex m×n matrix A, we index its singular values as σ1(A) � σ2(A) � · · · and call the value
E(A) = σ1(A) + σ2(A) + · · · the energy of A, thereby extending the concept of graph energy, introduced
by Gutman. Let 2 � m � n, A be an m × n nonnegative matrix with maximum entry α, and ‖A‖1 � nα.
Extending previous results of Koolen and Moulton for graphs, we prove that

E(A) � ‖A‖1√
mn

+
√

(m − 1)

(
‖A‖2

2 − ‖A‖2
1

mn

)
� α

√
n(m + √

m)

2
.

Furthermore, if A is any nonconstant matrix, then

E(A) � σ1(A) + ‖A‖2
2 − σ 2

1 (A)

σ2(A)
.

Finally, we note that Wigner’s semicircle law implies that

E(G) =
(

4

3π
+ o(1)

)
n3/2

for almost all graphs G.
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Our notation is standard (e.g., see [3,4,9]); in particular, we write Mm,n for the set of m × n

matrices with complex entries, and A∗ for the Hermitian adjoint of A. The singular values
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σ1(A) � σ2(A) � · · · of a matrix A are the square roots of the eigenvalues of AA∗. Note that
if A ∈ Mn,n is a Hermitian matrix with eigenvalues μ1(A) � · · · � μn(A), then the singular
values of A are the moduli of μi(A) taken in descending order.

For any A ∈ Mm,n, call the value E(A) = σ1(A) + · · · + σn(A) the energy of A. Gutman [7]
introduced E(G) = E(A(G)), where A(G) is the adjacency matrix of a graph G; in this nar-
row sense E(A) has been studied extensively (see, e.g., [2,8,10–14]). In particular, Koolen and
Moulton [10] proved the following sharp inequalities for a graph G of order n and size m � n/2:

E(G) � 2m/n +
√

(n − 1)
(
2m − (2m/n)2

)
� (n/2)(1 + √

n ). (1)

Moreover, Koolen and Moulton conjectured that for every ε > 0, for almost all n � 1, there exists
a graph G with E(G) � (1 − ε)(n/2)(1 + √

n ).
In this note we give upper and lower bounds on E(A) and find the asymptotics of E(G) of

almost all graphs G. We first generalize inequality (1) in the following way.

Theorem 1. If m � n, A is an m×n nonnegative matrix with maximum entry α, and ‖A‖1 � nα,

then

E(A) � ‖A‖1√
mn

+
√

(m − 1)

(
‖A‖2

2 − ‖A‖2
1

mn

)
. (2)

From here we derive the following absolute upper bound on E(A).

Theorem 2. If m � n and A is an m × n nonnegative matrix with maximum entry α, then

E(A) � α
(m + √

m)
√

n

2
. (3)

Note that Theorems 1 and 2 improve on the bounds for the energy of bipartite graphs given
in [11].

On the other hand, for every A ∈ Mm,n (m,n � 2), we have σ 2
1 (A) + σ 2

2 (A) + · · · =
tr(AA∗) = ‖A‖2

2, and so

‖A‖2
2 − σ 2

1 (A) = σ 2
2 + · · · + σ 2

m � σ2(A)
(
E(A) − σ1(A)

)
.

Thus, if A is a nonconstant matrix, then

E(A) � σ1(A) + ‖A‖2
2 − σ 2

1 (A)

σ2(A)
. (4)

If A is the adjacency matrix of a graph, this inequality is tight up to a factor of 2 for almost all
graphs. To see this, recall that the adjacency matrix A(n,1/2) of the random graph G(n,1/2) is
a symmetric matrix with zero diagonal, whose entries aij are independent random variables with
E(aij ) = 1/2, Var(a2

ij ) = 1/4 = σ 2, and E(a2k
ij ) = 1/4k for all 1 � i < j � n, k � 1. The result

of Füredi and Komlós [6] implies that, with probability tending to 1,

σ1
(
G(n,1/2)

) = (
1/2 + o(1)

)
n,

σ2
(
G(n,1/2)

)
<

(
2σ + o(1)

)
n1/2 = (

1 + o(1)
)
n1/2.

Hence, inequalities (1) and (4) imply that

(
1/2 + o(1)

)
n3/2 > E(G) >

(
1/2 + o(1)

)
n + (1/4 + o(1))n2

1/2
= (

1/4 + o(1)
)
n3/2
(1 + o(1))n
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for almost all graphs G.
Moreover, Wigner’s semicircle law [15] (we use the form given by Arnold [1, p. 263]), implies

that

E
(
A(n,1/2)

)
n−1/2 = n

(
2

π

1∫
−1

|x|
√

1 − x2 dx + o(1)

)
=

(
4

3π
+ o(1)

)
n,

and so E(G) = ( 4
3π

+ o(1))n3/2 for almost all graphs G.

Proof of Theorem 1. We adapt the proof of (1) in [10]. Letting i to be the all ones m-vector,
Rayleigh’s principle implies that σ 2

1 (A)m � 〈AA∗i, i〉; hence, after some algebra, σ1(A) �
‖A‖1/

√
mn. The AM–QM inequality implies that

E(A) − σ1(A) �

√√√√(m − 1)

n∑
i=2

σ 2
i (A) =

√
(m − 1)

(‖A‖2
2 − σ 2

1 (A)
)
.

The function x → x +
√

(m − 1)(‖A‖2
2 − x2) is decreasing if ‖A‖2/

√
m � x � ‖A‖2; hence, in

view of

‖A‖2
2 =

n∑
j=1

m∑
k=1

|akj |2 =
n∑

j=1

m∑
k=1

a2
kj � α

n∑
j=1

m∑
k=1

akj = α‖A‖1,

we find that ‖A‖2/
√

m � ‖A‖1/
√

mn, and inequality (2) follows. �
Proof of Theorem 2. If ‖A‖1 � nα, then Theorem 1 and ‖A‖2

2 � α‖A‖1 imply that

E(A) � ‖A‖1√
mn

+
√

(m − 1)

(
α‖A‖1 − ‖A‖2

1

mn

)
.

The right-hand side is maximal for ‖A‖1 = (m + √
m)αn/2 and inequality (3) follows. If

‖A‖1 < nα, we see that

E(A) �
√

m‖A‖2
2 �

√
mα‖A‖1 �

√
mnα � α

(m + √
m)

√
n

2
,

completing the proof. �
Remarks.

(1) The bound (2) may be refined using more sophisticated lower bounds on σ1(A).
(2) Inequality (4) and the result of Friedman [5] can be used to obtain lower bounds for the

energy of “almost all” d-regular graphs.
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