期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:365
Lp estimates for Feynman-Kac propagators with time-dependent reference measures
Article
Eberle, Andreas1  Marinelli, Carlo1 
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
关键词: Time-inhomogeneous Markov processes;    Feynman-Kac formula;    Dirichlet forms;    Poincare inequalities;    Logarithmic Sobolev inequalities;    Markov semigroups;    L-p estimates;    Markov Chain Monte Carlo;    Sequential Monte Carlo;    Importance sampling;   
DOI  :  10.1016/j.jmaa.2009.10.019
来源: Elsevier
PDF
【 摘 要 】

We introduce a class of time-inhomogeneous transition operators of Feynman-Kac type that can be considered as a generalization of symmetric Markov semigroups to the case of a time-dependent reference measure. Applying weighted Poincare and logarithmic Sobolev inequalities, we derive L-p -> L-p and L-p -> L-q estimates for the transition operators. Since the operators are not Markovian, the estimates depend crucially on the value of p. Our studies are motivated by applications to sequential Markov Chain Monte Carlo methods. (c) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2009_10_019.pdf 252KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次