JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:442 |
Boundedness in a three-dimensional chemotaxis-fluid system involving tensor-valued sensitivity with saturation | |
Article | |
Zheng, Jiashan1  | |
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Peoples R China | |
关键词: Boundedness; Chemotaxis-fluid system; Global existence; Tensor-valued sensitivity; | |
DOI : 10.1016/j.jmaa.2016.04.047 | |
来源: Elsevier | |
【 摘 要 】
We consider the chemotaxis-fluid system {n(t) + u center dot del n = del center dot (D(n)del n) - del center dot (nS(x, n, c) center dot del c) + an - bn(2), x is an element of Omega, t > 0, c(t) + u center dot del c - del c - c + n, x is an element of Omega, t > 0, (CF) u(t) + del P = del u + n del phi + g(x,t), x is an element of Omega, t > 0, del center dot u = 0, x is an element of Omega, t > 0 under homogeneous Neumann boundary conditions in a smooth bounded domain Omega subset of R-3, where phi is an element of W-1,W-infinity(Omega), a >= 0 and b > 0. Here g is an element of C-1((Omega) over bar x [0, infinity)) boolean AND L-infinity (Omega x (0, infinity)), D(n) >= u(m-1), vertical bar S(x,n,c)vertical bar <= (1 + n)(-alpha), and the parameter alpha > 0. If m > max{6/5 - alpha, 1/3}, then for all reasonably regular initial data, a corresponding initial-boundary value problem for (CF) possesses a globally defined weak solution through the Moser-type iteration. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2016_04_047.pdf | 496KB | download |