JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:487 |
Doubly nonlinear equation involving p(x)-homogeneous operators: Local existence, uniqueness and global behaviour | |
Article | |
Arora, Rakesh1  Giacomoni, Jacques1  Warnault, Guillaume1  | |
[1] UMR E2S UPPA CNRS 5142, LMAP, Batiment IPRA,Ave Univ, F-64013 Pau, France | |
关键词: Doubly nonlinear equation; Polytropic filtration equation; Leray-Lions operator with variable exponent; Stabilization; | |
DOI : 10.1016/j.jmaa.2020.124009 | |
来源: Elsevier | |
【 摘 要 】
In this work, we investigate the qualitative properties as uniqueness, regularity and stabilization of the weak solution to the nonlinear parabolic problem involving general p(x)-homogeneous operators: {q/2q - 1 partial derivative(t)(u(2q-1)) - del.a(x, del u) = f(x, u) + h(t, x)u(q-1) in (0, T) X Omega; u > 0 in (0, T) X Omega; u = 0 on (0, T) X partial derivative Omega; u(0, .) = u(0) in Omega. Thanks to the Picone's identity obtained in [10], we prove new results about comparison principles which yield a priori estimates, positivity and uniqueness of weak solutions. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2020_124009.pdf | 563KB | download |