期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:487
Doubly nonlinear equation involving p(x)-homogeneous operators: Local existence, uniqueness and global behaviour
Article
Arora, Rakesh1  Giacomoni, Jacques1  Warnault, Guillaume1 
[1] UMR E2S UPPA CNRS 5142, LMAP, Batiment IPRA,Ave Univ, F-64013 Pau, France
关键词: Doubly nonlinear equation;    Polytropic filtration equation;    Leray-Lions operator with variable exponent;    Stabilization;   
DOI  :  10.1016/j.jmaa.2020.124009
来源: Elsevier
PDF
【 摘 要 】

In this work, we investigate the qualitative properties as uniqueness, regularity and stabilization of the weak solution to the nonlinear parabolic problem involving general p(x)-homogeneous operators: {q/2q - 1 partial derivative(t)(u(2q-1)) - del.a(x, del u) = f(x, u) + h(t, x)u(q-1) in (0, T) X Omega; u > 0 in (0, T) X Omega; u = 0 on (0, T) X partial derivative Omega; u(0, .) = u(0) in Omega. Thanks to the Picone's identity obtained in [10], we prove new results about comparison principles which yield a priori estimates, positivity and uniqueness of weak solutions. (C) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2020_124009.pdf 563KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次