
J. Math. Anal. Appl. 487 (2020) 124009
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Doubly nonlinear equation involving p(x)-homogeneous 

operators: Local existence, uniqueness and global behaviour

Rakesh Arora, Jacques Giacomoni ∗, Guillaume Warnault
LMAP, UMR E2S-UPPA CNRS 5142 Bâtiment IPRA, Avenue de l’Université, F-64013 Pau, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 December 2019
Available online 3 March 2020
Submitted by T. Yang

Keywords:
Doubly nonlinear equation
Polytropic filtration equation
Leray-Lions operator with variable 
exponent
Stabilization

In this work, we investigate the qualitative properties as uniqueness, regularity 
and stabilization of the weak solution to the nonlinear parabolic problem involving 
general p(x)-homogeneous operators:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q

2q − 1
∂t(u2q−1) −∇. a(x,∇u) = f(x, u) + h(t, x)uq−1 in (0, T ) × Ω;

u > 0 in (0, T ) × Ω;

u = 0 on (0, T ) × ∂Ω;

u(0, .) = u0 in Ω.

Thanks to the Picone’s identity obtained in [10], we prove new results about 
comparison principles which yield a priori estimates, positivity and uniqueness of 
weak solutions.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction and main results

The study of various differential equations and variational problems with variable exponent has sig-
nificantly influenced mathematics in recent years. Indeed, the mathematical problems associated with 
nonstandard p(x)-growth conditions are fascinating in applications as the nonlinear elasticity theory and 
non-Newtonian fluids models. In specific, the importance of investigating these kinds of problems lies in 
modeling of various anisotropic features that occur in electrorheological flows, image restoration, filtration 
process in complex media, stratigraphy problems and heterogeneous biological interactions.
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In the literature, there are many works that explore the questions of existence (local or global), regularity 
or behaviour of solutions for parabolic equations with variable exponent, for example [1,2,4,6,10,29,30]. 
Prior investigations have implemented diverse approaches to study the elliptic and parabolic problems 
with nonstandard growth. In [10,30], the authors have followed the semigroup approach, involving the semi-
discretization in time method for p(x)-Laplacian and Leray-Lions type operators. In [4], the Galerkin method 
is used alternatively to prove the existence of weak solutions and similarly in [2,6], the authors have used 
perturbation methods. We further specify that global properties of solutions as extinction in finite time, 
localization, blow-up in finite time are also explored in [3,5]. The existence of mild solutions of parabolic 
equation and its stabilization properties are studied in [30] for p(x)-Laplacian and in [29] for Leray-Lions 
type operators.
The original model of our equation is given by

∂tu−∇. (|∇(um)|p−2∇(um)) = 0 in (0, T ) × Ω. (1.1)

For p = 2 and m > 1, (1.1) is well-known as the porous media equation. More generally, for p > 1 and 
m > 0, (1.1) is known as the Polytropic Filtration Equations (P.F.E.) (see [41]). The physical background 
of P.F.E. can be explained by considering the flow of compressible non-newtonian fluid in the homogeneous 
isotropic rigid medium which satisfies:

{
ε∂tu = −∇(u−→V ) Mass balance

P = P0u
m State equation

where u is the particle density of the fluid, −→V is the momentum velocity, P is the pressure, m is the 
polytropic constant and P0 is the reference pressure and ε is the porosity of the medium. Due to the 
influence of molecular and ion effects in non-newtonian fluids, the linear Darcy’s law is no longer valid. 
Instead, we have the nonlinear version of Darcy’s law:

μ
−→
V = −λ|∇P|p−1∇P

where μ is the viscosity of the fluid and λ is the permeability of the medium. By combining the two last 
equations, we obtain an equivalent form of (1.1). Depending upon the value of m and p, (1.1) is called as 
Slow Diffusion Equation (S.D.E.) if p > 1 + 1

m and Fast Diffusion Equation (F.D.E.) if p < 1 + 1
m (for 

more details see Chapter 2, [41]). A main difference between the two cases is the existence of solutions with 
compact support for the S.D.E. whereas the occurrence of dead core type solutions can not occur for the 
F.D.E. due to the infinite speed of perturbations propagation.
In the framework of Doubly Nonlinear Equations (D.N.E. for short) i.e. p �= 2 and m �= 1, (1.1) is referred 
in the literature (for instance see [33]) as:

p ∈ (1, 2) p > 2
m ∈ (0, 1) Doubly singular Degenerate-singular
m > 1 Singular-degenerate Doubly degenerate

The D.N.E. have significant interests because they possess a wide spectrum of applications for instance in 
fluid dynamics, soil science, combustion theory, reaction chemistry (see [8,9,12–14,21,31,35,37,38] and refer-
ence therein) and for D.N.E. involving p-Laplacian operator, we refer to [23,34,40,42]. The non-homogeneous 
variant of the model (1.1) together with multivalued source/sink terms can also be interpreted as the limit-
ing case (when m → 1) of the climate Energy Balance Models (see [16,17,22]). Recently, the study of D.N.E. 
involving variable exponent growth are getting into substantial attention: the authors in [10] have studied a 
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class of (1.1) involving the p(x)-Laplacian using time-discretization method. The authors in [18,19] and [6,7]
have studied existence of solutions to D.N.E. using a nonlinear version of minimizing movement method 
and Galerkin method respectively.
In the present paper, we study the existence, uniqueness and qualitative properties of the weak solutions of 
the following D.N.E. driven by a general quasilinear operator of Leray-Lions type:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q

2q − 1∂t(u
2q−1) −∇. a(x,∇u) = f(x, u) + h(t, x)uq−1 in QT ;

u > 0 in QT ;

u = 0 on Γ;

u(0, .) = u0 in Ω,

(DNE)

where T > 0, q > 1, QT
def= (0, T ) × Ω with Ω ⊂ RN , N ≥ 1 a smooth bounded domain, Γ 

def= (0, T ) × ∂Ω
and h belongs to L∞(QT ).
The main difference of this work with the previous studies is the doubly nonlinear feature together combined 
to the broad class of considered Leray-Lions type operators a. More precisely, problem (DNE) involves a 
class of variational operators a : Ω ×RN → R defined as, for any (x, ξ) ∈ Ω ×RN :

a(x, ξ) = (aj(x, ξ))j
def=

(
1

p(x)∂ξjA(x, ξ)
)

j

= 1
p(x)∇ξA(x, ξ)

where A : Ω ×RN → R+ is continuous, differentiable with respect to ξ and satisfies:

(A0) ξ → A(., ξ) is p(x)-homogeneous i.e. A(x, tξ) = tp(x)A(x, ξ), for any t ∈ R+, ξ ∈ RN and a.e. x ∈ Ω

with p ∈ C1(Ω) satisfying

1 < p−
def= min

x∈Ω
p(x) ≤ p(x) ≤ p+

def= max
x∈Ω

p(x) < ∞.

This class of operators a also satisfies ellipticity and growth conditions:

(A1) For j ∈ �1, N�, aj(x, 0) = 0, aj ∈ C1(Ω ×RN\{0}) ∩C(Ω ×RN ) and there exist two constants γ, Γ > 0
such that for all x ∈ Ω, ξ ∈ RN\{0} and η ∈ RN :

N∑
i,j=1

∂aj
∂ξi

(x, ξ) ηiηj ≥ γ|ξ|p(x)−2|η|2;

N∑
i,j=1

∣∣∣∣∂aj∂ξi
(x, ξ)

∣∣∣∣ ≤ Γ|ξ|p(x)−2.

Remark 1.1. The assumption (A1) gives the convexity of ξ �→ A(x, ξ) and growth estimates, for any (x, ξ) ∈
Ω ×RN :

γ

p(x) − 1 |ξ|
p(x) ≤ A(x, ξ) ≤ Γ

p(x) − 1 |ξ|
p(x); |a(x, ξ)| ≤ C|ξ|p(x)−1; (1.2)

and, see [39], for any ξ, η ∈ RN and x ∈ Ω, there exists a constant γ0 > 0 depending on γ and p such that
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〈a(x, ξ) − a(x, η), ξ − η〉 ≥ γ0

⎧⎨
⎩

|ξ − η|p(x) if p(x) > 2;
|ξ − η|2

(1 + |ξ| + |η|)2−p(x) if p(x) ≤ 2.
(1.3)

Moreover, the homogeneity assumption implies that A(x, ξ) = a(x, ξ).ξ for any (x, ξ) ∈ Ω ×RN .

Next, we impose the condition below to insure qualitative properties as regularity and the validity of Hopf 
Lemma.

(A2) There exists C > 0 such that for any (x, ξ) ∈ Ω ×RN\{0}:

N∑
i,j=1

∣∣∣∣ ∂ai∂xj
(x, ξ)

∣∣∣∣ ≤ C|ξ|p(x)−1(1 + | ln(|ξ|)|).

Remark 1.2. More precisely, from the condition (A2) we derive the Strong Maximum Principle (see [43]) 
and the C1,α-regularity of weak solutions (see Remark 5.3 in [26] and Remark 3.1 in [29]).

Concerning the conditions on the functions f and h, we assume:

(f0) f : Ω ×R+ → R+ is a continuous function such that f(x, 0) ≡ 0 and f is positive on Ω ×R+\{0}.
(f1) For any x ∈ Ω, s �→ f(x,s)

sq−1 is nonincreasing in R+\{0},

and

(Hh) there exists h ∈ L∞(Ω)\{0}, h ≥ 0 such that h(t, x) ≥ h(x) for a.e. in QT .

The study of (DNE) is naturally concerned with the investigation of the following associated parabolic 
problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vq−1∂t(vq) −∇. a(x,∇v) = h(t, x)vq−1 + f(x, v) in QT ;

v ≥ 0 in QT ;

v = 0 on Γ;

v(0, .) = v0 in Ω.

(E)

We further prove that a weak solution of (E) is also a weak solution of (DNE).
By denoting W def= W

1,p(x)
0 (Ω) (we refer to [24,36] for the definitions and properties of variables exponent 

Lebesgue and Sobolev spaces) and introducing weighted spaces with the notation δ(x) def= dist(x, ∂Ω):

L∞
δ (Ω) def= {w : Ω → R | measurable, w

δ(.) ∈ L∞(Ω)}

endowed with the norm ‖w‖δ = supΩ

∣∣∣w(x)
δ(x)

∣∣∣ and for r > 0:

Mr
δ(Ω) def= {w : Ω → R+ | measurable, ∃ c > 0, 1

c
≤ wr

δ(x) ≤ c},

we introduce the notion of weak solution of (E) as follows:
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Definition 1.1. Let T > 0, a weak solution to (E) is any positive function v ∈ L∞(0, T ; W) ∩ L∞(QT ) such 
that ∂t(vq) ∈ L2(QT ) satisfying for any φ ∈ L2(QT ) ∩ L1(0, T ; W) and for any t ∈ (0, T ]

t∫
0

∫
Ω

∂t(vq)vq−1φdxds+
t∫

0

∫
Ω

a(x,∇v).∇φdxds

=
t∫

0

∫
Ω

(h(s, x)vq−1 + f(x, v))φdxds

(1.4)

and v(0, .) = v0 a.e. in Ω.

Remark 1.3. In sense of Definition 1.1, a solution of (E) belongs to L∞(QT ), hence q
2q−1∂t(v

2q−1) =
vq−1∂t(vq) ∈ L2(QT ) holds in weak sense and we deduce the existence of a solution of (DNE).

Remark 1.4. Prototype examples of operators a satisfying (A0)-(A2) are given below: for any (x, ξ) ∈ Ω ×RN

and p ∈ C1,β(Ω) by:

A(x, ξ) =
J∑

j=1

⎛
⎜⎝gj(x)

⎛
⎝∑

i∈Pj

ξ2
i

⎞
⎠

p(x)
2
⎞
⎟⎠

where (Pj)j∈J is a partition of �1, N�, gj ∈ C1(Ω) ∩ C0,β(Ω) and gj(x) ≥ c > 0 for any j ∈ J .
In particular for A(x, ξ) = |ξ|p(x), (DNE) can be classified as S.D.E. if 2q < p− and F.D.E. if 2q > p+.

About the existence and properties of solutions of (E), we obtain

Theorem 1.1. Let T > 0 and q ∈ (1, p−). Assume A satisfies (A0)-(A2), f satisfies (f0), (f1) and

(f2) The mapping x �→ δ1−q(x)f(x, δ(x)) belongs to L2(Ωε) for some ε > 0 where Ωε
def= {x ∈ Ω | δ(x) < ε}.

Then, for any h ∈ L∞(QT ) satisfying (Hh) and for any initial data v0 ∈ M1
δ(Ω) ∩W, there exists a unique 

solution in sense of Definition 1.1.
More precisely, we have:

(i) Let v, w be two weak solutions of (E) with respect to the initial data v0, w0 ∈ M1
δ(Ω) ∩ W and h, 

g ∈ L∞(QT ) satisfying (Hh). Then, for any t ∈ [0, T ]:

‖(vq(t) − wq(t))+‖L2 ≤ ‖(vq0 − wq
0)+‖L2 +

t∫
0

‖(h(s) − g(s))+‖L2 ds. (1.5)

(ii) Assume in addition A satisfies, for any x ∈ Ω and for any ξ, η ∈ RN :

(A3) A(x, ξ−η
2 ) ≤ ζ(x)(A(x, ξ) + A(x, η))1−s(x)

(
A(x, ξ) + A(x, η) − 2A(x, ξ+η

2 )
)s(x)

where for any x ∈ Ω, s(x) = min{1, p(x)/2} and ζ(x) =
(
1 − 21−p(x))−s(x) if p(x) < 2 or ζ(x) = 1

2 if 
p(x) ≥ 2.

Then, v ∈ C([0, T ]; W).
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Remark 1.5. The above result can be generalized in case f(x, s) def= f̃(x, s) + f̂(x, s) where f̃ satisfies (f1)
and s → f̂(x,s)

sq−1 is Lipschitz with respect to the second variable, uniformly in x ∈ Ω with constant ω > 0. 
Then if f satisfies additionally (f0), (f2) and under same conditions for A and q, Theorem 1.1 still holds, 
(1.5) being replaced by

‖(vq(t) − wq(t))+‖L2 ≤ eωt‖(vq0 − wq
0)+‖L2 +

t∫
0

eω(t−s)‖(h(s) − g(s))+‖L2 ds.

Similar results have been obtained in [23] in the case of the p-Laplacian operator.

Remark 1.6. Prototype example of functions f satisfying (f0)-(f2) is given by for any (x, s) ∈ Ω × R+, 
f(x, s) = g(x)δγ(x)sβ where g ∈ L∞(Ω) is a nonnegative function, β ∈ [0, q − 1) and β + γ > q − 3

2 .

Remark 1.7. The condition (A3) reformulates the local form of Morawetz-type inequality producing conver-
gence properties.

In Theorem 1.1, the uniqueness of the solution in sense of Definition 1.1 is obtained by the following 
theorem relaxing the assumptions on v0 and h. More precisely, we show:

Theorem 1.2. Let v, w be two solutions of (E) in sense of Definition 1.1 with respect to the initial data 
v0, w0 ∈ L2q(Ω), v0, w0 ≥ 0 and h, h̃ ∈ L2(QT ). Then, for any t ∈ [0, T ]:

‖vq(t) − wq(t)‖L2(Ω) ≤ ‖vq0 − wq
0‖L2(Ω) +

t∫
0

‖h(s) − h̃(s)‖L2(Ω) ds. (1.6)

Using a similar approach based on nonlinear accretive operators theory as in [11,29,30], we introduce 
Tq : D(Tq) ⊂ L2(Ω) → L2(Ω) be the operator with the parameter q defined by

Tqu = −u(1−q)/q
(
∇. a(x,∇(u1/q)) + f(x, u1/q)

)
and the associated domain

D(Tq) = {w : Ω → R+ | measurable, w1/q ∈ W ∩ L2q(Ω), Tqw ∈ L2(Ω)}.

Based on the accretive property of Tq in L2(Ω) (see Theorem 2.2 and Corollary 2.2) and additional regularity 
on initial data, we obtain the following stabilization result for the weak solutions to (E):

Theorem 1.3. Under the assumptions of Theorem 1.1, let v be the weak solution of (E) with the initial data 
v0 ∈ M1

δ(Ω) ∩ W. Assume that h ∈ L∞([0, +∞) × Ω) satisfying (Hh) on [0, +∞) × Ω and there exists 
h∞ ∈ L∞(Ω) such that

t1+η‖h(t, .) − h∞‖L2 = O(1) at infinity for some η > 0. (1.7)

Then, for any r ∈ [1, ∞)

‖vq(t, .) − vqstat‖Lr → 0 as t → ∞

where vstat is the unique solution of associated stationary problem with the potential h∞ ∈ L∞(Ω).
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Remark 1.8. The stabilization in L∞-norm appeals new estimates linked to the T -accretivity of the operator 
Tq in L∞ and in L1 (see Remark 1.6 and Theorem 2.1 in [15] and Theorem 1.18 in [32]).

Remark 1.9. In Theorem 1.3, we noticed that v0 ∈ M1
δ(Ω) ∩W implies vq0 ∈ D(Tq)

L2

(see Proposition 2.11 
in [20]).

The current work extends significantly results contained in [10] which only apply to the p(x)-Laplace 
operator. We also prove in the present paper new stabilization results for (DNE). To this aim, we borrow 
the Picone’s identity obtained in [10] that we recall in the next result:

Theorem 1.4 (Picone’s identity). Let B : Ω ×RN → R be a continuous and differentiable function satisfying 

(A0) such that ξ �→ B(x, ξ) is strictly convex for any x ∈ Ω. Let u, v ∈ L∞(Ω) belonging to V̇ r
+

def= {w : Ω →
(0, +∞) | w 1

r ∈ W} for some r ≥ 1. Then, for any x ∈ Ω

1
p(x)∇ξB(x,∇(u1/r)).∇

(
v

u
r−1
r

)
≤ B

r
p(x) (x,∇(v1/r)) B

(p(x)−r)
p(x) (x,∇(u1/r))

where the inequality is strict if r > 1 or uv �≡ const. > 0.

We point out that the general form of operators requires to exploit sharply the Picone’s identity. In 
this regard, the integrability of the quotient in this one forces conditions of regularity or behaviours in the 
choices of test functions.
Another important part of our work is to study the convergence of the weak solution to a steady state. To this 
goal, our approach is to use the semigroup theory. Due to the general class of operators, additional technical 
computations are needed and performed with the help of the above Picone’s identity. In our knowledge, the 
study of solutions of D.N.E. involving the class of p(x)-homogeneous operators are not discussed so far in 
literature. So, in this context all results brought in this work are completely new. With both autonomous 
and non-autonomous terms and the large class of considered operators, (DNE) covers a large spectrum 
of physical situations. In our study, we also provide new strong maximum principle and weak comparison 
principle in frame of the large class of operators a.
Turning to the layout of the paper: in section 2, we study a problem related to the parabolic problem (E)
establishing existence and uniqueness results (Theorem 2.1-2.2, Corollary 2.1-2.2). In section 3 we then 
prove Theorem 1.1. Precisely, we prove Theorems 3.1 concerning the existence of a weak solution in sense of 
Definition 1.1 by semi-discretization in time method. Then the subsection 3.2 yields the proof of Theorem 1.2
and Corollary 3.1 giving the uniqueness using Picone’s identity and Theorem 3.3 establishes the regularity 
of solutions and then completes the proof of Theorem 1.1. Finally in section 4, we establish Theorem 1.3
via a classical argument of semigroup theory. In Appendix A, we state in the framework of general class of 
operators a weak comparison principle, strong maximum principle and regularity results.

2. Elliptic problem related to D.N.E.

In this section, we study a class of elliptic problem related to D.N.E. in order to prove Theorem 1.1. First 
we start with a direct application of Theorem 1.4 which provides a comparison principle, uniform estimates 
and uniqueness.

Lemma 2.1. Let A : Ω ×RN → R be a continuous and differentiable function satisfying (A0) with a(x, ξ) =
1

p(x)∇ξA(x, ξ) such that ξ → A(x, ξ) is strictly convex for any x ∈ Ω. Then, for r ∈ [1, p−), for any 
w1, w2 ∈ W ∩ L∞(Ω) two positive functions and for any x ∈ Ω
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a(x,∇w1).∇
(
wr

1 − wr
2

wr−1
1

)
+ a(x,∇w2).∇

(
wr

2 − wr
1

wr−1
2

)
≥ 0. (2.1)

If the equality occurs in (2.1), then w1 ≡ w2 in Ω.

Proof. Let w1, w2 ∈ W ∩ L∞(Ω) such that w1, w2 > 0 in Ω. Then Theorem 1.4 yields

Ar/p(x)(x,∇w1)A(p(x)−r)/p(x)(x,∇w2) ≥ a(x,∇w2).∇
(

wr
1

wr−1
2

)
.

Then, by using Young inequality and the equality A(x, ξ) = a(x, ξ).ξ, we obtain

a(x,∇w2).∇
(
w2 −

wr
1

wr−1
2

)
≥ r

p(x) (A(x,∇w2) −A(x,∇w1)). (2.2)

Reversing the role of w1 and w2:

a(x,∇w1).∇
(
w1 −

wr
2

wr−1
1

)
≥ r

p(x) (A(x,∇w1) −A(x,∇w2))

and adding the above inequalities we obtain (2.1) and the rest of the proof follows from Theorem 5.2 in 
[29]. �
2.1. L∞-potential

In this subsection, we study the following associated elliptic problem:

⎧⎪⎪⎨
⎪⎪⎩
v2q−1 − λ∇. a(x,∇v) = h0v

q−1 + λf(x, v) in Ω ;

v ≥ 0 in Ω ;

v = 0 on ∂Ω ,

(2.3)

where h0 ∈ L∞(Ω) and λ is a positive parameter. The notion of weak solution of (2.3) is defined as follows:

Definition 2.1. A weak solution of (2.3) is any nonnegative and nontrivial function v ∈ X 
def= W ∩ L2q(Ω)

such that for any φ ∈ X

∫
Ω

v2q−1φdx + λ

∫
Ω

a(x,∇v).∇φdx =
∫
Ω

h0v
q−1φdx + λ

∫
Ω

f(x, v)φdx. (2.4)

The first theorem gives the existence and the uniqueness of the weak solution of (2.3).

Theorem 2.1. Assume that A satisfies (A0)-(A2) and f satisfies (f0) and (f1). Then, for any q ∈ (1, p−), 
λ > 0 and h0 ∈ L∞(Ω)\{0}, h0 ≥ 0, there exists a weak solution v ∈ C1(Ω) ∩M1

δ(Ω) to (2.3).
Moreover, let v1, v2 be two weak solutions to (2.3) with h1, h2 ∈ L∞(Ω)\{0}, h1, h2 ≥ 0 respectively, we 

have with the notation t+
def= max{0, t}:

‖(vq1 − vq2)+‖L2 ≤ ‖(h1 − h2)+‖L2 . (2.5)
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Proof. Define the energy functional J on X:

J (v) = 1
2q

∫
Ω

v2q dx + λ

∫
Ω

A(x,∇v)
p(x) dx− 1

q

∫
Ω

h0(v+)q dx

− λ

∫
Ω

F (x, v) dx
(2.6)

where F (x, t) =
t+∫
0

f(x, s)ds.

Note from (f0)-(f1) that there exists C > 0 large enough such that for any (x, s) ∈ Ω ×R+

0 ≤ f(x, s) ≤ C(1 + sq−1). (2.7)

By (1.2) and (2.7), J is well defined, continuous on X and we have

J (v) ≥ ‖v‖qL2q

(
c1‖v‖qL2q − c2

)
+ ‖v‖W

(
c3‖v‖p−−1

W − c4

)

where the constants do not depend on u. Thus we deduce that J is coercive on X. Therefore we affirm that 
there exists v0 ∈ X a global minimizer of J .
Noting that, with the notation t− = t+ − t,

J (v0) ≥ J (v+
0 ) + 1

2q

∫
Ω

(v−0 )2q dx + λ

∫
Ω

A(x,∇v−0 )
p(x) dx ≥ J (v+

0 )

we deduce v0 ≥ 0. Let φ ∈ C1
c (Ω) be a nonnegative and nontrivial function, thus for any t > 0

J (tφ) ≤ tq(c1tq + c2t
p−−q − c3)

where the constants are independent of t and c3 > 0 since h0 �≡ 0. Hence for t small enough, J (tφ) < 0 and 
since J (0) = 0, we deduce v0 �≡ 0. The Gâteaux differentiability of J insures that v0 satisfies (2.4).
From Proposition Appendix A.2, we deduce v0 ∈ L∞(Ω) and Theorem 1.2 in [26] provides the C1,α(Ω)-
regularity of v0 for some α ∈ (0, 1).
By (f0) and (f1), f satisfies lims→0+ f(x, s)s1−2q = ∞ uniformly in x ∈ Ω, hence Lemma Appendix A.1
implies v0 ∈ M1

δ(Ω).
Finally, let v1, v2 ∈ M1

δ(Ω) be two weak solutions of (2.3) with respect to h1 and h2 respectively. Namely, 
for any φ, Ψ ∈ X, we have

∫
Ω

v2q−1
1 φdx + λ

∫
Ω

a(x,∇v1).∇φdx =
∫
Ω

h1v
q−1
1 φdx + λ

∫
Ω

f(x, v1)φdx

and ∫
Ω

v2q−1
2 Ψ dx + λ

∫
Ω

a(x,∇v2).∇Ψ dx =
∫
Ω

h2v
q−1
2 Ψ dx + λ

∫
Ω

f(x, v2)Ψ dx.

Subtracting above expressions by taking φ =
(
v1 − vq

2
vq−1
1

)+
and Ψ =

(
v2 − vq

1
vq−1
2

)−
then by (f1) and 

Lemma 2.1, we obtain
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∫
Ω

((vq1 − vq2)+)2 dx ≤
∫
Ω

(h1 − h2)(vq1 − vq2)+ dx

≤ ‖(h1 − h2)+‖L2(Ω)‖(vq1 − vq2)+‖L2

from which (2.5) follows. �
Remark 2.1. In the proof of Theorem 2.1, condition (f1) is not optimal to obtain the existence of a minimizer 
and to apply Lemma Appendix A.1. Indeed define a more general condition on f

(f ′
1) lim sups→+∞

f(x,s)
sp−−1 < γΛp± uniformly in x ∈ Ω

where p± := p−
p+(p+−1) and Λ−1 def= (sup‖u‖W=1(‖u‖Lp− (Ω)))p− , condition (f ′

1) is a sufficient condition to 
obtain the existence of a weak solution of (2.3). Moreover, to apply Lemma Appendix A.1 we assume in 
addition that f satisfies:

(f ′′
1 ) lim infs→0+

f(x,s)
s2q−1 > 1 uniformly in x ∈ Ω.

Remark 2.2. Inequality (2.5) implies the uniqueness of the solution in the sense of Definition 2.1. Moreover 
to obtain (2.5), we use more precisely φ, ψ belong to L∞

δ (Ω) ∩W. The uniqueness can be also obtained by 
using Theorem Appendix A.1.

Remark 2.3. For q = 1, (2.3) becomes

{
v + λT1 = h0 in Ω ;

v = 0 on ∂Ω.
(2.8)

For any h0 ∈ L∞(Ω) and for any f ∈ L∞(Ω × R) satisfying (f1) with q = 1, following the proof of 
Theorem 2.1, we get the existence of a unique weak solution v0 ∈ W ∩ L2(Ω) (not necessary nonnegative) 
in sense of Definition 2.1 with φ ∈ W ∩ L2(Ω).
Moreover, choosing as test function φ = (v0 ±M)+ where M = ‖h0‖L∞ + ‖f‖L∞ , we deduce v0 ∈ L∞(Ω)
and hence for any λ > 0, R(I + λT1) = L∞(Ω).
Moreover, let v1 and v2 be two solutions to (2.8) with h1, h2 ∈ L∞(Ω) respectively, we get from (1.3) and 
(f1): for any � : R �→ R Lipschitz and nondecreasing function such that �(0) = 0:

∫
Ω

(T1v1 − T1v2)�(v1 − v2) dx ≥ 0.

Thus, by section I.4. in [32], T1 is T -accretive in L1(Ω) namely for any h1, h2 ∈ L∞(Ω) and respectively 
v1, v2 the solutions to (2.8), we have

‖(v1 − v2)+‖L1 ≤ ‖(h1 − h2)+‖L1 .

Finally, using Remark 1.6 in [15], T1 is T -accretive in Lm(Ω), for any m ∈ [1, ∞] i.e.

‖(v1 − v2)+‖Lm ≤ ‖(h1 − h2)+‖Lm , m ∈ [1,∞].

We point out that T -accretivity of Tq, for q > 1, in L2(Ω) is equivalent to
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∫
Ω

(Tqv1 − Tqv2)�(v1 − v2) dx ≥ 0

with the fixed choice �(t) = t+.

In the way of Remark 2.3, Theorem 2.1 implies existence, uniqueness and accretivity results for the 
perturbed problem induced by the operator Tq:

Corollary 2.1. Assume A satisfies (A0)-(A2) and f verifies (f0) and (f1). Then, for any q ∈ (1, p−), λ > 0
and h0 ∈ L∞(Ω)\{0}, h0 ≥ 0, there exists a unique solution u ∈ C1(Ω) of

⎧⎪⎪⎨
⎪⎪⎩
u + λTqu = h0 in Ω;

u > 0 in Ω;

u = 0 on ∂Ω.

(2.9)

Namely, u belongs to V̇ q
+ ∩M1/q

δ (Ω) and satisfies:

∫
Ω

uψ dx + λ

∫
Ω

a(x,∇(u
1
q )).∇(u

1−q
q ψ) − f(x, u

1
q )u

1−q
q ψ dx =

∫
Ω

h0ψ dx (2.10)

for any ψ such that

|ψ|1/q ∈ L∞
δ (Ω) and |∇ψ|

δq−1(.) ∈ Lp(x)(Ω). (2.11)

Moreover, if u1 and u2 be two solutions of (2.9) corresponding to h1 and h2 respectively, then

‖(u1 − u2)+‖L2 ≤ ‖(u1 − u2 + λ(Tqu1 − Tqu2))+‖L2 . (2.12)

Proof. Define the energy functional E on V̇ q
+ ∩ L2(Ω) as E(u) = J (u1/q) where J is defined in (2.6).

Let v0 be the weak solution of (2.3) and the global minimizer of (2.6). We set u0 = vq0. Then, u0 belongs to 
V̇ q

+ ∩M1/q
δ (Ω).

Let ψ satisfying (2.11). Then there exists t0 > 0 such that for t ∈ (−t0, t0), u0 + tψ > 0. Hence we have 
E(u0 + tψ) ≥ E(u0) for any t ∈ (−t0, t0). Using Taylor expansion, dividing by t and passing to the limit as 
t → 0 we deduce that u0 verifies (2.10).
Consider ũ ∈ V̇ q

+ ∩M1/q
δ (Ω) another solution satisfying (2.10). Thus ṽ = ũ1/q verifies (2.4) for φ ∈ L∞

δ (Ω) ∩
W. By Remark 2.2, we deduce ṽ = v0 and the uniqueness of the solution of (2.9). Finally (2.12) follows 
from (2.5). �
2.2. Extensions for L2-potential

We now generalize existence results of subsection 2.1 for h0 ∈ L2(Ω) by approximation method.

Theorem 2.2. Assume A satisfies (A0)-(A2) and f verifies (f0) and (f1). Then, for any q ∈ (1, p−), λ > 0 and 
h0 ∈ L2(Ω)\{0}, h0 ≥ 0, there exists a positive weak solution v ∈ X of (2.3) in the sense of Definition 2.1. 
Moreover, if h0 ∈ Lr(Ω) for some r > max

{
1, N

}
, v ∈ L∞(Ω) and v is unique.
p−
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Proof. Consider hn ∈ C1
c (Ω), hn ≥ 0 which converges to h in L2(Ω). By Theorem 2.1, for any n ≥ 1, define 

vn ∈ C1,α(Ω) ∩M1
δ(Ω) as the unique positive weak solution of (2.3) with h0 = hn.

For any s > 1 and a, b ≥ 0, observe that

|a− b|2s ≤ (as − bs)2. (2.13)

Hence (2.5) implies, for any n, p ∈ N∗:

‖(vn − vp)+‖L2q ≤ ‖(vqn − vqp)+‖qL2 ≤ ‖(hn − hp)+‖qL2 .

Thus we deduce that (vn) converges to v in L2q(Ω) and (vqn) converges to vq in L2(Ω).
Note that the limit v does not depend to the choice of the sequence (hn) by (2.5). So define in particular, 
for any n ∈ N∗, hn = min{h, n}. By (2.5), we deduce that (vn) is nondecreasing and for any n ∈ N∗,

v(x) ≥ vn(x) ≥ v1(x) ≥ cδ(x) > 0 a.e. in Ω, (2.14)

for some c independent of n.
From (1.2), (2.7) and using Hölder inequality, equation (2.4) with φ = vn becomes

λγ

p+ − 1

∫
Ω

|∇vn|p(x) dx ≤
∫
Ω

a(x,∇vn).∇vn dx

≤ c (‖vn‖qL2q(‖hn‖L2 + 1) + ‖vn‖L2q )

≤ c (‖v‖qL2q (sup
n∈N

‖hn‖L2 + 1) + ‖v‖L2q )

for some c independent on n. Hence we deduce that (vn) is uniformly bounded in W and vn converges 
weakly to v in W (up to a subsequence).
Now taking φ = vn − v in (2.4), we obtain as n → ∞

∣∣∣∣∣∣
∫
Ω

f(x, vn)(vn − v) dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
Ω

hnv
q−1
n (vn − v) dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
Ω

v2q−1
n (vn − v) dx

∣∣∣∣∣∣ → 0

which infers 
∫
Ω

a(x, ∇vn).∇(vn − v) dx → 0.

Since vn ⇀ v in W, we deduce that:
∫
Ω

(a(x,∇vn) − a(x,∇v)).∇(vn − v) dx → 0.

Thus we infer that ∫
Ω

|∇(vn − v)|p(x) dx → 0 as n → ∞. (2.15)

Indeed we split Ω into two parts: Ωl = {x ∈ Ω : p(x) ≤ 2} and Ωu = {x ∈ Ω : p(x) > 2}.
Since γ0 > 0, (1.3) implies (2.15) directly on Ωu. On Ωl, we get from the Hölder inequality and (vn) bounded 
in W:
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∫
Ωl

|∇(vn − v)|p(x) dx

≤ c

∥∥∥∥ |∇(vn − v)|p(x)

(|∇v| + |∇vn|)r(x)

∥∥∥∥
L

2
p(x) (Ωl)

‖(|∇v| + |∇vn|)r(x)‖
L

2
2−p(x) (Ωl)

≤ c1

∥∥∥∥ |∇(vn − v)|p(x)

(|∇v| + |∇vn|)r(x)

∥∥∥∥
L

2
p(x) (Ωl)

def= c1N

≤ c1

⎛
⎝ ∫

Ωl

|∇(vn − v)|2 dx
(|∇v| + |∇vn|)2−p(x) dx

⎞
⎠

p̂

where r(x) = p(x)(2−p(x))
2 , p̂ = min{1, p+

2 } if N ≤ 1 and p̂ = p−
2 otherwise.

Hence from (1.3), we conclude (2.15) in Ωl and the convergence of (vn) to v in W. Then by using dominated 
convergence Theorem and classical compactness arguments, we obtain

a(x,∇vn) → a(x,∇v) in
(
L

p(x)
p(x)−1 (Ω)

)N

.

Finally passing to the limit in (2.4) satisfied by vn and applying the dominated convergence Theorem, we 
obtain v is a weak solution of (2.3). The regularity arises from Proposition Appendix A.2. �

Next result is the extension of Corollary 2.1 for L2-potential.

Corollary 2.2. Assume A satisfies (A0)-(A2) and f verifies (f0) and (f1). Then, for any q ∈ (1, p−), λ > 0
and h0 ∈ L2(Ω) ∩ Lr(Ω)\{0} for some r > max{1, Np−

}, h0 ≥ 0, there exists a solution u of (2.9). Namely, 
u belongs to V̇ q

+ ∩ L∞(Ω) and satisfies (2.10) for any ψ verifying (2.11) and there exists c > 0 such that 
u(x) ≥ cδq(x) a.e. in Ω.

Proof. Noting that the existence of a weak solution v0 ∈ L∞(Ω) of (2.3) for h ∈ L2(Ω), can be obtained by 
global minimization method as in Theorem 2.1, we deduce from Theorem Appendix A.1 that the solution 
obtained by Theorem 2.2 is a global minimizer.
Then we follow the same scheme as the proof of Corollary 2.1. We consider the functional energy E defined 
on V̇ q

+ ∩ L2(Ω). We set u0 = vq0. Then, u0 belongs to V̇ q
+ ∩ L∞ and (2.14) implies u0(x) ≥ cδq(x) a.e. in Ω.

Take ψ satisfying (2.11), then for t small enough, E(u0 + tψ) ≥ E(u0). From classical arguments, we deduce 
that u0 verifies (2.10). �
3. Parabolic problem related to D.N.E.

In this section, we prove Theorems 1.1 by dividing the proof into three main steps: existence, uniqueness 
and regularity of weak solution. The proof of Theorem 1.1 (i) follows from the proof of Theorem 1.5 in [10]
using Lemma 2.1, Theorem 2.2 and Corollary 2.2. Thus we omit the proof.

3.1. Existence of a weak solution

In light of Remark 1.3 and improving Theorem 1.4 in [10] to p(x)-homogeneous operator, we consider 
the problem (E) with v0 ∈ M1

δ(Ω) ∩W.

Theorem 3.1. Under the assumptions of Theorem 1.1, there exists a solution v to (E) in sense of Defini-
tion 1.1. Furthermore v belongs to C([0, T ]; Lr(Ω)) for any r ≥ 1 and there exists C > 0 such that, for any 
t ∈ [0, T ]:
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1
C
δ(x) ≤ v(t, x) ≤ Cδ(x) a. e. in Ω. (3.1)

Proof. The sketch of the proof is classical and in particular we follow the proof of Theorem 1.4 in [10]. 
However, for the convenience of the readers, we give the entire proof due to the general form setting of the 
operator a which requires technical computations. We proceed in several steps:

Step 1: Semi-discretization in time of (E)
Let n
 ∈ N∗ and set Δt = T/n
. For n ∈ �0, n
�, we define tn = nΔt and for (t, x) ∈ [tn−1, tn) × Ω:

hΔt
(t, x) = hn(x) def= 1

Δt

tn∫
tn−1

h(s, x)ds.

Thus ‖hΔt
‖L∞(QT ) ≤ ‖h‖L∞(QT ) and let ε > 0, then by density, there exists a function hε ∈ C1

0 (QT ) such 
that ‖hε − h‖L2(QT ) ≤ ε. Since hε is uniformly continuous, we infer that (hε)Δt

→ hε in L2(QT ) and by 
observing that ‖(hε)Δt

− hΔt
‖L2(QT ) ≤ ‖hε − h‖L2(QT ), we have

‖hΔt
− h‖L2(QT ) ≤‖hΔt

− (hε)Δt
‖L2(QT ) + ‖(hε)Δt

− hε‖L2(QT )

+ ‖hε − h‖L2(QT )

≤2‖hε − h‖L2(QT ) + ‖(hε)Δt
− hε‖L2(QT ) ≤ 3ε

for Δt small enough. We then conclude that hΔt
→ h in L2(QT ).

Applying Theorem 2.1 with λ = Δt, h0 = Δth
n + vqn−1, we define the implicit Euler scheme,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
vqn − vqn−1

Δt

)
vq−1
n −∇. a(x,∇vn) = hnvq−1

n + f(x, vn) in Ω ;

vn ≥ 0 in Ω ;

vn = 0 on ∂Ω ,

(3.2)

where, for all n ∈ �1, n
�, vn ∈ C1(Ω) ∩M1
δ(Ω) is the weak solution in sense of Definition 2.1.

Step 2: Sub- and supersolution
In this step, we establish the existence of a subsolution w and a supersolution w of suitable equations such 
that vn ∈ [w, w] for all n ∈ �0, n
�.
As in Theorem 2.1, we prove, for any μ > 0, there exists a unique weak solution, wμ ∈ C1(Ω) ∩M1

δ(Ω), to

⎧⎪⎪⎨
⎪⎪⎩

−∇. a(x,∇w) = μ(hwq−1 + f(x,w)) in Ω ;

w ≥ 0 in Ω ;

w = 0 on ∂Ω,

(3.3)

where h is defined in (Hh).
Let μ1 < μ2 and wμ1

, wμ2
be weak solutions of (3.3). Then,

∫
Ω

a(x,∇wμ1
).∇φdx = μ1

∫
Ω

(hwq−1
μ1

+ f(x,wμ1
))φdx

∫
a(x,∇wμ2

).∇ψ dx = μ2

∫
(hwq−1

μ2
+ f(x,wμ2

))ψ dx.
Ω Ω
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Summing the above equations with φ = (wq
μ1−wq

μ2 )+

wq−1
μ1

and ψ = (wq
μ2−wq

μ1 )−

wq−1
μ2

, then from (2.1) and (f1), we 

deduce (wμ)μ is nondecreasing. From Theorem 1.2 of [26], we obtain for some α ∈ (0, 1)

‖wμ‖C1,α(Ω) ≤ C for μ ≤ μ0 (3.4)

with μ0 > 0 small enough and C = C(μ0, α). Therefore, (3.4) implies {wμ : μ ≤ μ0} is uniformly bounded 
and equicontinuous in C1(Ω). Furthermore, from Theorem Appendix A.2, we have that ‖wμ‖L∞ → 0 as μ →
0. Applying Arzela-Ascoli Theorem, we then obtain wμ → 0 in C1(Ω) as μ → 0. Then by Mean Value 

Theorem, we choose μ small enough such that w def= wμ ∈ C1(Ω) ∩M1
δ(Ω) satisfies 0 < w ≤ v0.

Similarly, there exists wκ ∈ C1(Ω) ∩M1
δ(Ω) the weak solution of the following problem:

⎧⎪⎪⎨
⎪⎪⎩

−∇. a(x,∇w) = ‖h‖L∞(QT )w
q−1 + f(x,w) + κ in Ω ;

w ≥ 0 in Ω ;

w = 0 on ∂Ω .

(3.5)

By Theorem Appendix A.2 and by comparison principle, we have for κ large enough that w def= wκ ≥ wκ ≥ v0
where wκ is the weak solution of (A.1).
Rewrite (3.2) as follows

v2q−1
n − Δt∇. a(x,∇vn) = Δt

(
hnvq−1

n + f(x, vn)
)

+ vqn−1v
q−1
n .

Since w ≤ v0 ≤ w and w, w are respectively a sub- and supersolution of the above equation for n = 1, 
Theorem Appendix A.1 yields v1 belongs to [w, w] and by induction vn ∈ [w, w] for any n ∈ �1, n
�.

Step 3: A priori estimates
Define the functions for n ∈ �1, n
� and t ∈ [tn−1, tn)

vΔt
(t) = vn and ṽΔt

(t) = t− tn−1

Δt
(vqn − vqn−1) + vqn−1

which satisfy

vq−1
Δt

∂tṽΔt
−∇. a(x,∇vΔt

) = f(x, vΔt
) + hnvq−1

Δt
(3.6)

and by Step 2, there exists c > 0 independent of Δt such that for any (t, x) ∈ QT

1
c
δ(x) ≤ vΔt

, ṽ
1/q
Δt

≤ cδ(x). (3.7)

In (3.2), summing from 1 to n′ ∈ �1, n
� and multiplying 
vq
n−vq

n−1

vq−1
n

∈ X, Young’s inequality implies

1
2

n′∑
n=1

∫
Ω

Δt

(
vqn − vqn−1

Δt

)2

dx +
n′∑

n=1

∫
Ω

a(x,∇vn).∇
(
vqn − vqn−1

vq−1
n

)
dx

≤ 2
n′∑

n=1
Δt‖hn‖2

L2 + 2
n′∑

n=1
Δt

∥∥∥∥f(x, vn)
vq−1
n

∥∥∥∥
2

L2
.

(3.8)

Since vn ∈ [w, w] ⊂ M1
δ(Ω), (2.7) and (f2) insure that f(x,vn)

vq−1
n

is uniformly bounded in L2(Ω) in Δt. Hence, 
combining (1.2), (2.2) and (3.8), we deduce, for any n′ ≥ 1:
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∫
Ω

c1|∇vn′ |p(x) − c2|∇v0|p(x)

p(x) dx ≤
∫
Ω

q

p(x) (A(x,∇vn′) −A(x,∇v0)) dx

≤
n′∑

n=1

∫
Ω

q

p(x) (A(x,∇vn) −A(x,∇vn−1)) dx

≤
n′∑

n=1

∫
Ω

a(x,∇vn).∇
(
vqn − vqn−1

vq−1
n

)
dx ≤ c3

where the constants c1 = qγ
p+−1 and c2 = qΓ

p−−1 . The above inequality implies that

(vΔt
) is bounded in L∞(0, T ;W) uniformly in Δt (3.9)

and from (3.8), we deduce

(∂tṽΔt
) is bounded in L2(QT ) uniformly in Δt. (3.10)

Moreover, for t̃ = t− tn−1

Δt
, we have

∇(ṽ
1
q

Δt
) =

(
t̃ + (1 − t̃)

(
vn−1

vn

)q) 1−q
q

(
t̃∇vn + (1 − t̃)

(
vn−1

vn

)q−1

∇vn−1

)
.

Hence we deduce from (3.9) and Step 2 that

(ṽ1/q
Δt

) is bounded in L∞(0, T ;W) uniformly in Δt. (3.11)

Furthermore using (2.13), (3.10) implies

sup
[0,T ]

‖ṽ1/q
Δt

− vΔt
‖2q
L2q(Ω) ≤ sup

[0,T ]
‖ṽΔt

− vqΔt
‖2
L2(Ω) ≤ oΔt

(1). (3.12)

Gathering (3.9)-(3.12), up to a subsequence, vΔt
, ṽ1/q

Δt

∗
⇀ v in L∞(0, T ; W) as Δt → 0.

From (3.7) and (3.10) we deduce that (ṽΔt
)Δt

is equicontinuous in C([0, T ]; Lr(Ω)) for any r ∈ [1, +∞). 
Moreover, from (2.13), we also deduce that (ṽ1/q

Δt
)Δt

is uniformly equicontinuous in C([0, T ]; Lr(Ω)) for any 
r ∈ [1, +∞). Thus, by Arzela Theorem, we get up to a subsequence that for any r ∈ [1, +∞)

ṽΔt
→ vq in C([0, T ];Lr(Ω)) and vΔt

→ v in L∞(0, T ;Lr(Ω)), (3.13)

hence (3.7) implies (3.1). From (3.10) and (3.13), we obtain

∂tṽΔt
→ ∂t(vq) in L2(QT ). (3.14)

Step 4: v satisfies (1.4)
From (3.13) and (3.14), we have as Δt → 0+

∣∣∣∣∣∣
∫

vq−1
Δt

(vΔt
− v)∂tṽΔt

dxdt

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫

hnvq−1
Δt

(vΔt
− v) dxdt

∣∣∣∣∣∣ → 0

QT QT
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and from (f0), (3.7) and (3.13), we obtain
∫
QT

f(x, vΔt
)(vΔt

− v) dxdt → 0 as Δt → 0+.

Then, multiplying (3.6) to (vΔt
− v) and passing to the limit, we obtain

∫
QT

a(x,∇vΔt
).∇(vΔt

− v) dxdt → 0 as Δt → 0+.

Since vΔt

∗
⇀ v in L∞(0, T ; W) and from the above limit, we conclude

∫
QT

(a(x,∇vΔt
) − a(x,∇v)).∇(vΔt

− v) dxdt → 0 as Δt → 0+.

By (1.3) and classical compactness arguments, we get

a(x,∇vΔt
) → a(x,∇v) in (Lp(x)/(p(x)−1)(QT ))N . (3.15)

Now, we pass to the limit in (3.6). First we remark that (vq−1
Δt

) converges to vq−1 in L2(QT ). Indeed (2.13)
and (3.12)-(3.13) imply as Δt → 0:

‖vq−1
Δt

− vq−1‖
2q

q−1
L2(QT ) ≤ C

∫
QT

|vq−1
Δt

− vq−1|
2q

q−1 dxdt

≤ C

∫
QT

|vqΔt
− vq|2 dxdt

≤ C sup
[0,T ]

(
‖vqΔt

− ṽΔt
‖2
L2 + ‖ṽΔt

− vq‖2
L2

)
→ 0.

Hence plugging (3.10) and Step 1, we have in L2(QT ):

vq−1
Δt

∂tṽΔt
→ vq−1∂t(vq) and hΔt

vq−1
Δt

→ hvq−1.

Thus, we deduce, for any φ ∈ L2(QT ) as Δt → 0+:
∣∣∣∣∣∣
∫
QT

(
vq−1
Δt

∂tṽΔt
− vq−1∂t(vq)

)
φdxdt

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫
QT

(
hΔt

vq−1
Δt

− hvq−1
)
φdxdt

∣∣∣∣∣∣ → 0. (3.16)

Furthermore from (2.7) and (3.7), (f(x, vΔt
)φ) is uniformly bounded in L2(QT ) in Δt and by (3.13) we 

have f(x, vΔt
)φ → f(x, v)φ a.e. in QT (up to a subsequence). Then, by dominated convergence Theorem 

we obtain ∫
QT

f(x, vΔt
)φdxdt →

∫
QT

f(x, v)φdxdt as Δt → 0. (3.17)

Finally gathering (3.15)-(3.17), we conclude that v satisfies (1.4) by passing to the limit in (3.6) for any 
φ ∈ L2(QT ) ∩ L1(0, T ; W). �
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3.2. Uniqueness

Proof of Theorem 1.2. Let ε ∈ (0, 1), we take

φ = (v + ε)q − (w + ε)q

(v + ε)q−1 and Ψ = (w + ε)q − (v + ε)q

(w + ε)q−1 (3.18)

both belonging to L2(QT ) ∩ L1(0, T ; W), in

t∫
0

∫
Ω

∂t(vq)vq−1φdxds +
t∫

0

∫
Ω

a(x,∇v).∇φdxds

=
t∫

0

∫
Ω

h(s, x)vq−1φdxds +
t∫

0

∫
Ω

f(x, v)φdxds,

t∫
0

∫
Ω

∂t(wq)wq−1ψ dxds +
t∫

0

∫
Ω

a(x,∇w).∇ψ dxds

=
t∫

0

∫
Ω

h̃(s, x)wq−1ψ dxds +
t∫

0

∫
Ω

f(x,w)ψ dxds

and summing the above equalities, we obtain Iε = Jε where

Iε =
t∫

0

∫
Ω

(
∂t(vq)vq−1

(v + ε)q−1 − ∂t(wq)wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds

+
t∫

0

∫
Ω

a(x,∇(v + ε)).∇
(

(v + ε)q − (w + ε)q

(v + ε)q−1

)
dxds

+
t∫

0

∫
Ω

a(x,∇(w + ε)).∇
(

(w + ε)q − (v + ε)q

(w + ε)q−1

)
dxds

and

Jε =
t∫

0

∫
Ω

(
hvq−1

(v + ε)q−1 − h̃wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds

+
t∫

0

∫
Ω

(
f(x, v)

(v + ε)q−1 − f(x,w)
(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds.

First we consider Iε. Since w
w+ε , 

v
v+ε ≤ 1 and v, w ∈ L∞(QT ), we have

∣∣∣∣∂t(vq)vq−1

(v + ε)q−1 − ∂t(wq)wq−1

(w + ε)q−1

∣∣∣∣|(v + ε)q − (w + ε)q| ≤ C(|∂t(vq)| + |∂t(wq)|)

where C depends on the L∞ norm of v and w and is uniform on ε ∈ (0, 1). Moreover, as ε → 0
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(
∂t(vq)vq−1

(v + ε)q−1 − ∂t(wq)wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) → 1

2∂t(v
q − wq)2

a.e. in QT . Then dominated convergence Theorem and Lemma 2.1 give

lim
ε→0

Iε ≥
1
2

t∫
0

∫
Ω

∂t(vq − wq)2 dxds.

In the same way for Jε, dominated convergence Theorem implies

t∫
0

∫
Ω

(
hvq−1

(v + ε)q−1 − h̃wq−1

(w + ε)q−1

)
((v + ε)q − (w + ε)q) dxds

→
t∫

0

∫
Ω

(h− h̃)(vq − wq) dxds.

Moreover Fatou’s Lemma gives

lim inf
ε→0

t∫
0

∫
Ω

f(x, v)
(v + ε)q−1 (w + ε)q dxds ≥

t∫
0

∫
Ω

f(x, v)
vq−1 wq dxds,

lim inf
ε→0

t∫
0

∫
Ω

f(x,w)
(w + ε)q−1 (v + ε)q dxds ≥

t∫
0

∫
Ω

f(x,w)
wq−1 vq dxds.

Hence gathering the three last limits and from (f1), we obtain

lim inf
ε→0

Jε ≤
t∫

0

∫
Ω

(h− h̃)(vq − wq) dxds.

Since Iε = Jε, we conclude using Hölder inequality that for any t ∈ [0, T ]

1
2

t∫
0

∫
Ω

∂t(vq − wq)2 dxds ≤
t∫

0

‖h− h̃‖L2(Ω)‖vq − wq‖L2(Ω) ds

and by Grönwall Lemma (Lemma A.4 in [20]) we deduce (1.6). �
Hence we conclude the uniqueness of the solution in sense of Definition 1.1 in Theorem 1.1:

Corollary 3.1. Let v be a solution of (E) in sense of Definition 1.1 with the initial data v0 ∈ L2q(Ω), v0 ≥ 0
and h ∈ L2(QT ). Then, v is unique.

From Theorem 3.1 and Corollary 3.1, we deduce the existence result for the parabolic problem involving 
the operator Tq:

Theorem 3.2. Under the assumptions of Theorem 1.1, for any u0 such that u1/q
0 ∈ M1

δ(Ω) ∩W, there exists 
a unique weak solution u ∈ L∞(QT ) of
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + Tqu = h in QT ;

u > 0 in QT ;

u = 0 on Γ;

u(0, .) = u0 in Ω,

(3.19)

in the sense that:

• u1/q belongs to L∞(0, T ; W), ∂tu ∈ L2(QT );
• there exists c > 0 such that for any t ∈ [0, T ], 1

c δ
q(x) ≤ u(t, x) ≤ cδq(x) a.e. in Ω;

• u satisfies, for any t ∈ [0, T ]:

t∫
0

∫
Ω

∂tuψ dxds +
t∫

0

∫
Ω

a(x,∇u1/q).∇(u
1−q
q ψ) dxds

=
t∫

0

∫
Ω

f(x, u1/q)u
1−q
q ψ dxds +

t∫
0

∫
Ω

h(s, x)ψ dxds,

(3.20)

for any ψ such that

|ψ|1/q ∈ L∞(0, T ;L∞
δ (Ω)) and |∇ψ|

δq−1(·) ∈ L1(0, T ;Lp(x)(Ω)). (3.21)

Moreover, u belongs to C([0, T ]; Lr(Ω)) for any r ∈ [1, +∞).

Proof. Let v be the weak solution of (E) in sense of Definition 1.1 obtained by Theorem 3.1. Then, setting 
in (1.4) u = vq and choosing φ = ψ

vq−1 with ψ satisfying (3.21), we get the existence of a solution of (3.19).
Let us consider the uniqueness issue: let ũ be another solution of (3.19). We set ṽ = ũ1/q and taking 
ψ = vq−1φ with φ ∈ L∞(0, T ; L∞

δ (Ω)) ∩ L1(0, T ; W) in (3.20), we obtain that ṽ verifies (1.4) with the 
additional condition φ ∈ L∞(0, T ; L∞

δ (Ω)). Since v, ṽ verify (3.1), the test functions defined in (3.18) with 
v and ṽ belong to L∞(0, T ; L∞

δ (Ω)). Hence (1.6) holds and we conclude the uniqueness. �
3.3. Regularity of weak solution

Theorem 3.3. Under the assumptions of Theorem 1.1, assume in addition A satisfies (A3). Then, v the weak 
solution of (E) obtained by Theorem 3.1 belongs to C([0, T ]; W).

Proof. The proof is similar as the proof of Theorem 1.1, Step 4 in [29]. However, the nonlinear term in 
time implies a specific approach in the computations. Hence for the reader’s convenience, we include the 
complete proof.
We have v ∈ L∞(0, T ; W) ∩ C([0, T ]; Lp−(Ω)) and p ∈ C1(Ω), Theorem 8.4.2 in [24] yields W ⊂ Lp−(Ω)
with compact embedding. So we deduce t �→ v(t) is weakly continuous in W.
Moreover, we consider the mapping K(v) =

∫
Ω

A(x,∇v)
p(x) dx defined in W. The convexity of A implies that K

is weakly lower semicontinuous. Thus for any t0 ∈ [0, T ], we have

K(v(t0)) ≤ lim inf
t→t0

K(v(t)). (3.22)

In (3.2), summing from n′ to n′′ and multiplying by 
vq
n−vq

n−1
q−1 ∈ X, we obtain
vn
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n′′∑
n=n′

∫
Ω

Δt

(
vqn − vqn−1

Δt

)2

dx +
n′′∑

n=n′

∫
Ω

a(x,∇vn).∇
(
vqn − vqn−1

vq−1
n

)
dx

=
n′′∑

n=n′

∫
Ω

hn(vqn − vqn−1) dx +
n′′∑

n=n′

∫
Ω

f(x, vn)
vq−1
n

(vqn − vqn−1)dx.

As in Step 4 of the proof of Theorem 3.1, after using Lemma 2.1 we pass to the limit as n → ∞ and we 
get: for t ∈ [t0, T ]

t∫
t0

∫
Ω

∂t(vq)2 dxds + qK(v(t)) ≤
t∫

t0

∫
Ω

h∂t(vq) dxds + qK(v(t0))

+
t∫

t0

∫
Ω

f(x, v)
vq−1 ∂t(vq) dxds.

(3.23)

Taking lim sup in (3.23) as t → t+0 and by (3.22) we deduce

lim
t→t+0

K(v(t)) = K(v(t0))

and hence we get the right-continuity of K.

Now, for t > t0, let η ∈ (0, t − t0). We multiply (E) by τηv = vq(. + η, .) − vq

ηvq−1 ∈ L2(QT ) ∩ L1(0, T ; W) and 

integrate over (t0, t) × Ω and hence by using Theorem 1.4 and Young inequality, we obtain:

t∫
t0

∫
Ω

vq−1∂t(vq)τηv dxds + q

η

t∫
t0

K(v(s + η)) −K(v(s)) ds

≥
t∫

t0

∫
Ω

hvq−1τηv dxds +
t∫

t0

∫
Ω

f(x, v)τηv dxds.

(3.24)

Since v ∈ L∞(0, T ; W) and K is right-continuous in W, by dominated convergence Theorem, we have as 
η → 0+

1
η

t0+η∫
t0

K(v(s)) ds → K(v(t0)) and 1
η

t+η∫
t

K(v(s)) ds → K(v(t)).

Then (3.24) yields,

t∫
t0

∫
Ω

∂t(vq)2 dxds + qK(v(t)) ≥
t∫

t0

∫
Ω

h∂t(vq) dxds + qK(v(t0))

+
t∫

t0

∫
Ω

f(x, v)
vq−1 ∂t(vq) dxds.

From (3.23), we have the equality for any t, t0 ∈ [0, T ] in the above inequality and we deduce the left-
continuity of K.
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By (A3), the proof of corollary A.3 in [28] holds by considering K as the semimodular. Then, we deduce 
that ∇v(t) converges to ∇v(t0) in Lp(x)(Ω)N as t → t0 and hence v ∈ C([0, T ]; W). �
4. Stabilization

4.1. Stationary problem related to (E)

In the aim of studying the behaviour of global solution of the problem (E) as t → ∞, we consider the 
following problem

⎧⎪⎪⎨
⎪⎪⎩

−∇. a(x,∇v) = b(x)vq−1 + f(x, v) in Ω;

v ≥ 0 in Ω;

v = 0 on ∂Ω,

(S)

where b ∈ L∞(Ω). The notion of weak solution of (S) is defined as follows:

Definition 4.1. A weak solution to (S) is any nonnegative function v ∈ W ∩L∞(Ω), v �≡ 0 such that for any 
φ ∈ W, v satisfies

∫
Ω

a(x,∇v).∇φdx =
∫
Ω

bvq−1φdx +
∫
Ω

f(x, v)φdx. (4.1)

Theorem 4.1. Assume that A satisfies (A0)-(A2) and (f0) and (f1) hold. Then, for any q ∈ (1, p−), b ∈
L∞(Ω)\{0}, b ≥ 0, there exists a unique weak solution v ∈ C1(Ω) ∩M1

δ(Ω) to (S).

Proof. Consider the energy functional L defined on W such that

L̃(v) =
∫
Ω

A(x,∇v)
p(x) dx− 1

q

∫
Ω

b(v+)q dx−
∫
Ω

F (x, v) dx

where F is defined as in (2.6). By following the same arguments as in Theorem 2.1, we deduce the existence 
of nonnegative global minimizer v0 to L and the Gâteaux differentiability of L̃ implies v0 satisfies (4.1).
Combining Proposition Appendix A.1 and Theorem 4.1 in [27], we deduce v0 ∈ L∞(Ω). Then by Theorem 
1.2 of [26], we obtain, v0 ∈ C1,α(Ω) for some α ∈ (0, 1). From Lemma Appendix A.1, we deduce v0 > 0 and 
v0 belongs to M1

δ(Ω).
Let ṽ0 another solution of (S). As previously, we deduce that ṽ0 ∈ C1,α(Ω) ∩M1

δ(Ω).

We choose 
vq0 − ṽq0
vq−1
0

and 
ṽq0 − vq0
ṽq−1
0

as test functions in (4.1) satisfied by v0 respectively ṽ0, then adding the 

both equations we deduce from Lemma 2.1 and (f1):

∫
Ω

a(x,∇v0).∇
(
vq0 − ṽq0
vq−1
0

)
+ a(x,∇ṽ0).∇

(
ṽq0 − vq0
ṽq−1
0

)
dx = 0.

Applying once again Lemma 2.1, we obtain v0 = ṽ0. �
Hence we obtain using the same way of the proof of Corollary 2.1:
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Corollary 4.1. Under the conditions of Theorem 4.1, there exists a unique solution u of the following problem

⎧⎪⎪⎨
⎪⎪⎩
Tqu = b in Ω;

u > 0 in Ω;

u = 0 on ∂Ω.

(4.2)

Namely, u belongs to V̇ q
+ ∩M1/q

δ (Ω) and satisfies, for any ψ such that (2.11):

∫
Ω

a(x,∇u1/q).∇(u
1−q
q ψ) dx−

∫
Ω

f(x, u1/q)
u(q−1)/q ψ dx =

∫
Ω

bψ dx.

4.2. Proof of Theorem 1.3

Proof of Theorem 1.3. We consider two cases:

Case 1: h ≡ h∞.
We introduce the family {S(t); t ≥ 0} on M1/q

δ (Ω) ∩ V̇ q
+ defined as w(t) = S(t)w0 where w is the solution 

obtained by Theorem 3.2 (and Theorem 3.1) of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tw + Tqw = h∞ in QT ;
w > 0 in QT ;
w = 0 on Γ;
w(0, .) = w0 in Ω.

(4.3)

Thus {S(t); t ≥ 0} defines a semigroup on M1/q
δ (Ω) ∩ V̇ q

+. Indeed the uniqueness and properties of solution 
of (3.19) imply for any w0,

S(t + s)w0 = S(t)S(s)w0, S(0)w0 = w0 (4.4)

and from (3.13) the map t → S(t)w0 is continuous from [0, ∞) to L2(Ω).
Note that v = (S(t)w0)1/q is the solution of (E) in the sense of Definition 1.1 with h = h∞ and the initial 
data w1/q

0 .
Let T > 0 and v be the solution of (E) obtained by Theorem 3.1 with h ≡ h∞ and the initial data v0, hence 
we get u(t) = v(t)q = S(t)u0 with u0 = vq0.
Let w = wμ be the solution of (3.3) and w = wκ be the solution of (3.5). Then, w, w ∈ M1

δ(Ω) and for μ
small enough and κ large enough, w is a subsolution and w a supersolution of (S) with b = h∞ such that 
w ≤ v0 ≤ w.
We define u(t) = S(t)wq and u(t) = S(t)wq the solutions to (4.3). So u and u are obtained by the iterative 
scheme (3.2) with v0 = w and v0 = w. Hence, by construction the map t → u(t) is nondecreasing, the map 
t → u(t) is nonincreasing and (1.5) insures for any t ≥ 0,

wq ≤ u(t) ≤ u(t) ≤ u(t) ≤ wq a. e. in Ω. (4.5)

We set u∞ = limt→∞ u(t) and u∞ = limt→∞ u(t). Then from (4.4), the continuity in L2(Ω) and monotone 
convergence theorem, we get in L2(Ω):

u∞ = lim S(t + s)(wq) = S(t)( lim S(s)(wq)) = S(t)u∞
s→∞ s→∞
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and analogously we have u∞ = S(t)u∞. We deduce u∞ and u∞ are solutions of (4.2) with b = h∞ and by 

uniqueness, we have ustat
def= u∞ = u∞ where ustat is the stationary solution of perturbed parabolic problem 

(4.2). Therefore from (4.5) and dominated convergence Theorem, we obtain

‖u(t) − ustat‖L2 → 0 as t → ∞.

Finally, using (4.5) and interpolation inequality ‖.‖r ≤ ‖.‖θ∞‖.‖1−θ
2 , we conclude the above convergence for 

any r ≥ 1.

Case 2: h �≡ h∞.
From (1.7), for any ε and for some η′ ∈ (0, η), there exists t0 > 0 large enough such that for any t ≥ t0:

t1+η′‖h(t, .) − h∞‖L2 ≤ ε.

Let T > 0 and v be the solution of (E) obtained by Theorem 3.1 with h and the initial data v0 = u
1/q
0 and 

we set u = vq.
Since v satisfies (3.1), we can define ũ(t) = S(t + t0)u0 = S(t)u(t0). Then, by (1.5) and uniqueness, we have 
for any t > 0:

‖u(t + t0, .) − ũ(t, .)‖L2 ≤
t∫

0

‖h(s + t0, .) − h∞‖L2 ds ≤ ε

tη
′

0
≤ ε.

By Case 1, we have ũ(t) → ustat in L2(Ω) as t → ∞. Therefore, we obtain

‖u(t) − ustat‖L2 → 0 as t → ∞

and by using interpolation inequality we conclude the proof of Theorem 1.3. �
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Appendix A. Additional results

In this section, we give extensions of technical results for the class of operator A or for some boundary 
value problems.
We begin by extending Theorem 4.3 in [10] using Lemma 2.1. Then, we obtain the comparison principle:

Theorem Appendix A.1. Assume A satisfies (A0)-(A2) and f satisfies (f0) and (f2). Let v, v ∈ X ∩L∞(Ω)
be nonnegative functions respectively subsolution and supersolution to (2.3) for some h ∈ Lr(Ω), r ≥ 2, 
h ≥ 0. Then v ≤ v.

The proof is similar as the proof of Theorem 1.2 where the sub- and supersolution do not need to belong 
to M1

δ(Ω). The proof is very similar and we omit it. In the next theorem, we extend Lemma 2.1 of [25] and 
Lemma 3.2 of [29] for p(x)-homogeneous operators.

Theorem Appendix A.2. Assume A satisfies (A0)-(A2). Let λ > 0 and wλ ∈ W ∩ C1,α(Ω) be the positive 
weak solution of
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{
−∇. a(x,wλ) = λ in Ω;

wλ = 0 on ∂Ω.
(A.1)

Then, there exists λ∗ > 0 such that wλ satisfies

• for any λ ≥ λ∗, ‖wλ‖L∞(Ω) ≤ C1λ
1/(p−−1) and wλ(x) ≥ C2λ

1
p+−1+ε δ(x) for some ε ∈ (0, 1);

• for λ < λ∗, ‖wλ‖L∞(Ω) ≤ C3λ
1/(p+−1)

where the constants depend upon p+, p−, N, Ω and α. Moreover if λ1 < λ2 then wλ1 ≤ wλ2 .

Now we state a Strong and Hopf maximum principle for variable exponent p(x)-homogeneous operators 
and theirs proof follows from Lemma 3.3 and 3.4 in [10].

Lemma Appendix A.1. Let α, β be two measurable functions such that 1 < β− ≤ β+ < α− ≤ α+ < ∞. Let 
h, l ∈ L∞(Ω) be nonnegative functions, h > 0 and k : Ω × R+ → R+ and A satisfies (A0)-(A1). Consider 
u ∈ C1(Ω) a nonnegative and nontrivial solution to

{
−∇. a(x,∇u) + l(x)uα(x)−1 = h(x)uβ(x)−1 + k(x, u) in Ω ;

u = 0 on ∂Ω .

If lim inf
t→0+

k(x, t)t1−α(x) > ‖l‖L∞ uniformly in x ∈ Ω, then u is positive in Ω.

Furthermore, if Ω satisfies the interior ball condition for any x ∈ ∂Ω, then ∂u∂�n (x) < 0 where �n is the outward 
unit normal vector at x.

We state a slight extension of Proposition A.1 in [10] and Proposition A.2 in [29].

Proposition Appendix A.1. Let q ∈ [1, p−). Assume A satisfies (A0)-(A2) and u ∈ X satisfying for any 
Ψ ∈ X: ∫

Ω

a(x,∇u).∇Ψ dx =
∫
Ω

huq−1Ψ dx

where h ∈ L2(Ω) ∩ Lr(Ω) with r > max{1, Np−
}. Then u ∈ L∞(Ω).

Proposition Appendix A.2. Under the assumptions of Proposition Appendix A.1, consider u ∈ X a nonneg-
ative function satisfying, for any Ψ ∈ X, Ψ ≥ 0:

∫
Ω

u2q−1Ψ dx +
∫
Ω

a(x,∇u) · ∇Ψ dx ≤
∫
Ω

(f(x, u) + huq−1)Ψ dx

where f verifies for any (x, t) ∈ Ω ×R+, |f(x, t)| ≤ c1 + c2|t|s(x)−1 with s ∈ C(Ω) such that for any x ∈ Ω, 
1 < s(x) < p∗(x) and h ∈ L2(Ω) ∩ Lr(Ω) with r > max{1, Np−

}. Then u ∈ L∞(Ω).

The proofs of above results follow the proofs of Theorem 4.1 in [27] and Proposition A.1 in [10].
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[35] O.A. Ladyzĕnskaja, New equations for the description of the motions of viscous incompressible fluids, and global solvability 

for their boundary value problems, Tr. Mat. Inst. Steklova 102 (1967) 85–104 (in Russian).
[36] V. Rădulescu, D. Repovš, Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative 

Analysis, Monographs and Research Notes in Mathematics, CRC Press, Taylor & Francis Group, 2015.
[37] L.A. Richards, Capillary conduction of liquids through porous mediums, Physics 1 (5) (1931) 318–333.
[38] R. Showalter, N.J. Walkington, Diffusion of fluid in a fissured medium with microstructure, SIAM J. Math. Anal. 22 (6) 

(1991) 1702–1722.
[39] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ. 51 (1) (1984) 126–150.
[40] M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl. 

132 (1) (1988) 187–212.

http://refhub.elsevier.com/S0022-247X(20)30171-2/bib546A9A80EB981C7F0AABCAEB34D9514Es1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib546A9A80EB981C7F0AABCAEB34D9514Es1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibCF0AC41DDFF111E8299E51E12417F7BFs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibCF0AC41DDFF111E8299E51E12417F7BFs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibA2C29192484301FA800100E16E494ACFs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib59CDAAB533F69062F6FBDDE53F047C03s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib59CDAAB533F69062F6FBDDE53F047C03s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib84AF1C48F92DAD5D3C09A15BBA7FA031s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib84AF1C48F92DAD5D3C09A15BBA7FA031s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibBDAF742F838289E05321B1FA286422D0s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibBDAF742F838289E05321B1FA286422D0s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib6A9E32C39E3DEDF6DCEB96F0DAC0FFDDs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib7FC56270E7A70FA81A5935B72EACBE29s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib7FC56270E7A70FA81A5935B72EACBE29s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibCA176B787ACACFA1D039427F76E2EB88s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibCA176B787ACACFA1D039427F76E2EB88s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibC249EFBC14B74804E77F1110DFD6DC04s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibC249EFBC14B74804E77F1110DFD6DC04s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib9D5ED678FE57BCCA610140957AFAB571s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibC9512565EF6194CA664DC41EC0DE7A53s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibC9512565EF6194CA664DC41EC0DE7A53s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib893B56E3CFE153FB770A120B83BAC20Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib96D4CDFF8ED57E93E3B3D843CFFE3AF7s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib96D4CDFF8ED57E93E3B3D843CFFE3AF7s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibCD944E065096C6B61DB1B58B46899FF8s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibCD944E065096C6B61DB1B58B46899FF8s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib88569094FDF01199ECCA27030B17CE15s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib88569094FDF01199ECCA27030B17CE15s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibBE8E0A9E622F2AD725A8F678DFC18C41s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibBE8E0A9E622F2AD725A8F678DFC18C41s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibD7B0090213041D63F16788796E41473Ds1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibD7B0090213041D63F16788796E41473Ds1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib21AD0BD836B90D08F4CF640B4C298E7Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib21AD0BD836B90D08F4CF640B4C298E7Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibADCE578D04ED03C31F6AC59451FCF8E4s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib99CCABED315E3609CAE2DD150DB1210Bs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibA59A51793802922B0F964655DD7EF447s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibA59A51793802922B0F964655DD7EF447s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib84464AC380FBDE8CCAC75520FAAC235Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib84464AC380FBDE8CCAC75520FAAC235Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibD5586A1FCED034560245A38E7063580As1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibFB8469D644BCCF9B799C83FD2B2694A8s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibFB8469D644BCCF9B799C83FD2B2694A8s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibA0362C750677EF1BD762E3F6A0CC41ABs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibA0362C750677EF1BD762E3F6A0CC41ABs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib09E135328CBE29A223F8EBCDDEB3517Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib09E135328CBE29A223F8EBCDDEB3517Cs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib5BC265A67FA336CF9940A1907C3FADB2s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib5BC265A67FA336CF9940A1907C3FADB2s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibE51FD15D5F1AB57CB86F33B77AEF0712s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibE51FD15D5F1AB57CB86F33B77AEF0712s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib520066EA885E4E7B869F2C0F2F63C63Fs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib520066EA885E4E7B869F2C0F2F63C63Fs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib4BF3FD6A0C4F4AC570903654C28FB2BBs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibDD7536794B63BF90ECCFD37F9B147D7Fs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibFEE887985136A46E89B270270D39D0E4s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibFEE887985136A46E89B270270D39D0E4s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib38DD815E66DBD0D47A2B876CA442E987s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib38DD815E66DBD0D47A2B876CA442E987s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibBB80B7C78CBC7101C375AB38D63A2B07s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib6F56AA4E2561EB66F17F6D8DE8070A77s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib6F56AA4E2561EB66F17F6D8DE8070A77s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib1B0D6185A36020B62C1E4208703FBF1Fs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib08AD08F6491037714D09263A79BEBFBAs1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib08AD08F6491037714D09263A79BEBFBAs1


R. Arora et al. / J. Math. Anal. Appl. 487 (2020) 124009 27
[41] Z. Wu, J. Zhao, J. Yin, H. Li, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001.
[42] H. Zhan, Infiltration equation with degeneracy on the boundary, Acta Appl. Math. 153 (2018) 147–161.
[43] Q. Zhang, A strong maximum principle for differential equations with nonstandard p(x)-growth conditions, J. Math. Anal. 

Appl. 312 (1) (2005) 24–32.

http://refhub.elsevier.com/S0022-247X(20)30171-2/bib974F8E3414A1248E71D6FC7B6A6551C5s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bib4730A4E3DBC9057824EFB4D2BE729786s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibAD24BA7D76CDEA98AAD3A2208F1675B3s1
http://refhub.elsevier.com/S0022-247X(20)30171-2/bibAD24BA7D76CDEA98AAD3A2208F1675B3s1

	Doubly nonlinear equation involving p(x)-homogeneous operators: Local existence, uniqueness and global behaviour
	1 Introduction and main results
	2 Elliptic problem related to D.N.E.
	2.1 L∞-potential
	2.2 Extensions for L2-potential

	3 Parabolic problem related to D.N.E.
	3.1 Existence of a weak solution
	3.2 Uniqueness
	3.3 Regularity of weak solution

	4 Stabilization
	4.1 Stationary problem related to (E)
	4.2 Proof of Theorem 1.3

	Acknowledgments
	Appendix A Additional results
	References


