期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:372
Boundary controllability for the semilinear Schrodinger equations on Riemannian manifolds
Article
Deng, Li1,2  Yao, Peng-Fei2 
[1] SW Jiaotong Univ, Dept Math, Inst Appl Math, Chengdu 610031, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Key Lab Control & Syst, Beijing 100190, Peoples R China
关键词: Semilinear Schrodinger equation;    Exact controllability;    Riemannian metric;   
DOI  :  10.1016/j.jmaa.2010.06.043
来源: Elsevier
PDF
【 摘 要 】

We study the boundary exact controllability for the semilinear Schrodinger equation defined on an open, bounded, connected set Omega of a complete, n-dimensional, Riemannian manifold M with metric g. We prove the locally exact controllability around the equilibria under some checkable geometrical conditions. Our results show that exact controllability is geometrical characters of a Riemannian metric, given by the coefficients and equilibria of the semilinear Schrodinger equation. We then establish the globally exact controllability in such a way that the state of the semilinear Schrodinger equation moves from an equilibrium in one location to an equilibrium in another location. (C) 2010 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2010_06_043.pdf 354KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次