期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:410
The Borel summable solutions of heat operators on a real analytic manifold
Article
Lysik, Grzegorz1,2 
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw 10, Poland
[2] Jan Kochanowski Univ, Kielce, Poland
关键词: Heat operators;    Commuting vector fields;    Borel summability;    Integral means;    Pizzetti's formulas;   
DOI  :  10.1016/j.jmaa.2013.08.011
来源: Elsevier
PDF
【 摘 要 】

We study heat type equations partial derivative(t)u = (Delta) over tildeu, where the operator (Delta) over tilde is given by a sum of squares of commuting, real analytic vector fields acting on a real analytic manifold. We give necessary and sufficient conditions for convergence and Borel summability of formal power series solutions in terms of generalized integral means of the initial data. The results are also valid for affine perturbations of (Delta) over tilde. (C) 2013 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_08_011.pdf 234KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次