期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:407
On dyadic nonlocal Schrodinger equations with Besov initial data
Article
Aimar, Hugo1,2  Bongioanni, Bruno1,3  Gomez, Ivana1,2 
[1] CONICET UNL, IMAL, Santa Fe, NM, Argentina
[2] UNL, Fac Ingn Quim, Santa Fe, NM USA
[3] UNL, Fac Ingn & Ciencias Hidr, Santa Fe, NM, Argentina
关键词: Schrodinger equation;    Besov spaces;    Haar basis;    Nonlocal derivatives;   
DOI  :  10.1016/j.jmaa.2013.05.001
来源: Elsevier
PDF
【 摘 要 】

In this paper we consider the pointwise convergence to the initial data for the Schrodinger-Dirac equation i partial derivative u/partial derivative t = D(beta)u with u(x, 0) = u(0) in a dyadic Besov space. Here D-beta denotes the fractional derivative of order beta associated to the dyadic distance delta on R+. The main tools are a summability formula for the kernel of D-beta and pointwise estimates of the corresponding maximal operator in terms of the dyadic Hardy-Littlewood function and the Calderon sharp maximal operator. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_05_001.pdf 445KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次