期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:407 |
On dyadic nonlocal Schrodinger equations with Besov initial data | |
Article | |
Aimar, Hugo1,2  Bongioanni, Bruno1,3  Gomez, Ivana1,2  | |
[1] CONICET UNL, IMAL, Santa Fe, NM, Argentina | |
[2] UNL, Fac Ingn Quim, Santa Fe, NM USA | |
[3] UNL, Fac Ingn & Ciencias Hidr, Santa Fe, NM, Argentina | |
关键词: Schrodinger equation; Besov spaces; Haar basis; Nonlocal derivatives; | |
DOI : 10.1016/j.jmaa.2013.05.001 | |
来源: Elsevier | |
【 摘 要 】
In this paper we consider the pointwise convergence to the initial data for the Schrodinger-Dirac equation i partial derivative u/partial derivative t = D(beta)u with u(x, 0) = u(0) in a dyadic Besov space. Here D-beta denotes the fractional derivative of order beta associated to the dyadic distance delta on R+. The main tools are a summability formula for the kernel of D-beta and pointwise estimates of the corresponding maximal operator in terms of the dyadic Hardy-Littlewood function and the Calderon sharp maximal operator. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2013_05_001.pdf | 445KB | download |