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1. Introduction

In quantum mechanics time dependent Schrédinger type equations with space derivatives of order less than two, have
been considered since the introduction of the Dirac operator which is actually local and of first order [6]. More recently
some fractional nonlocal Riemann-Liouville calculus, and some other nonlocal cases, have also been considered in the
literature, [8]. See also [11,9,2].

The differential operator in the space variable that we shall consider is an analogous of the nonlocal fractional derivative
oforder 8 > 0

fG)—fW)
I —y|"F
The basic difference is given by the fact that we substitute the Euclidean distance |x — y| by the dyadic distance § from x
to y. To introduce our main result let us start by defining the basic metric § and the Besov type spaces induced by & on the
interval RT = (0, 00). '
Let® = Ujez ® be the family of the standard dyadic intervals in R*. In other words I € ® if[ = I, = [(k— 1)27, k27),
j € Z,k € Z". Each © contains the intervals of the j-th level, for I € ®/, |[I| = 2. We shall write ® to denote the intervals
Iin® with |I] < 1.ForI € © we shall denote by I* and I~ the right and left halves of I, which belong to ©®*!. Given two
points x and y in R™ its dyadic distance §(x, y), is defined as the length of the smallest dyadic interval ] € ® which contains
x and y. On the diagonal A of RT x R™, § vanishes.
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Since for x fixed 5 1#(x, y) is not integrable, the analog to (1.1) with §(x, y) instead of |x — y| in R is well defined as an
absolutely convergent integral, only on a subspace of functions which have certain regularity with respect to the distance
8.For0 < A < 1, with B;dy we denote the class of all L? complex valued functions f defined on R* such that

/ f ) —fy)P?
Q

(. y) 2 dxdy < oo,

with Q = {(x,y) € R? : 8(x, y) < 2}.For f and g both in B} ; , the inner product

/fgdx+/ f® —f®) gx) —gy) dxdy
R+ o Sy syt sxy)

gives a Hilbert structure on Bg’ dy-
Since, as it is easy to check from the definition of §, |[x — y| < &(x,y) when (x, y) € Q, we have that the standard Besov
space Bﬁ on R is a subspace of B%, a4y See [12] for the classical theory of Besov spaces.

For I € © we shall write h; to denote the Haar wavelet adapted to I. In other words h; = |I|_% (X;- — X;+) where, as
usual X is the indicator function of the set E. Sometimes, when the parameters of scale and position j and k, need to be
emphasized, we shall write h§< to denote h; for I = Ifc. In the sequel the scale parameter j of I will be denoted by j(I). As it is
well known {h; : I € D} is an orthonormal basis for L2. As usual we write V; to denote the subspace of L? of those functions
which are constant on each interval between integers. With Py we denote the projector of L? onto V.

As a consequence of Theorem 9 in Section 3, we shall obtain the next result.

Theorem 1. Let 0 < 8 < 1and u® € L? with Pou® = 0, be given. Assume that u® is a function in B with 8 < A < 1, then the
function defined by

ux, t) = Z eltll™" (u®, hy) hy(x)
=

solves the problem

du 2 -1 u(x, t) —u(y, t)

i—(x, t) = d eRT,t>0
@) lat(X ) 2 /R+ 50 )17 ly X >

u(x, 0) = u’(x) xeR";

where the initial condition is verified pointwise almost everywhere.

The corresponding problem in the classical case of the free particle is hard. Some fundamental steps in this direction are
contained in [1,4,7,3,13,15,14].

The paper is organized as follows. In Section 2 we introduce the basic operator and the corresponding Besov space and
its wavelet characterization in terms of the Haar system. In Section 3 we prove the main result, which contains a detailed
formulation of Theorem 1.

2. Nonlocal dyadic differential operators and dyadic Besov spaces

Let 0 < B < 1 be given. We shall deal with the operator D? whose spectral form in the Haar system is given by
DPhy = |I| P h forl € ®.

Let 8(#) be the linear span of the Haar system .7 = {h; : I € ©}. The space §(s¢) is dense in L.

The operator D? is well defined from (%) into itself and is given by

DPf = II7P () by
le®

for f € 8(s#). Observe that D? is unbounded in the L? norm.
In the next result we show that D? has the structure of a nonlocal differential operator if we change the Euclidean distance
by the dyadic distance on R™.

Theorem 2. Let 0 < B8 < 1 be given, then for f € $(2#) we have

F—1 F—-f
28 Jpr S(x, )1

where the integral on the right hand side is absolutely convergent.

Df(x) = 2 (2.1)

Before proving Theorem 2, we collect some basic properties of §.
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A

Fig. 1. The picture depicts schematically the level sets A; of § for j = 0 (lightgray), for j = 1 (darkgray) and j = 2 (black).

Lemma 3. (3.a) R* x R* is the disjoint union of the diagonal A and the level sets A; = {(x,y) € RT x Rt : 8(x,y) = 277} of
S forj € Z,and Q = Uj»q Aj (see Fig. 1).

(3b) For y € R, 87 =3 ,., 277 X 4,

(3-c) Each Aj is the disjoint union of the sets B(I) = (I x I7) U (I” x I'") for I € D'

(3.d) For f € 8(s7), set F(x,y) = f(x) — f(y), theninf{6(x,y) : (x,y) € suppF} > 0.

(3.e) Let « > —1. Then for every x € R*, 8(x, y)* is locally integrable as a function of y. Moreover, /;'_1 8(x, y)*dy is bounded
by Q" — 1)~ foreveryl € Z™.

Proof of Lemma 3. Proof of (3.a). Given a point (x,y) € Rt x R which does not belong to A, since for some ] € D,

(x,y) €] xJ and since x # y, there exists one and only one subinterval I of ] such that x and y belong both to I but not both
to the same half of I. In other words (x, y) € B(I). Since I C J then, j(I) > 0 and 8(x, y) = 2770, so that (x, y) € Ajpy. O

Proof of (3.b). Follows directly from (3.a). O

Proof of (3.c). Notice first that if I and J are two different intervals on ©/, then IT N J* = @and I~ NJ~ = @ hence
B(I) N B(J) = @. On the other hand, if (x, y) € B(I) for some ] € ®/,thenx € [T andy € " orx € I~ and y € I, so that the
smallest dyadic interval containing both x and y is I itself. This means that §(x, y) = 27, in other words (x, y) € Aj. Assume
now that (x, y) is any point in A;, then §(x, y) = 27J. This means that there exists I € ©/ such that (x,y) € I x I butxandy
do not belong to the same half of I. In other words (x,y) € I x I but (x,y) & (I” x ") U (T x I").Hence (x,y) € B(I). O

Proof of (3.d). Since any f € 8(¢) is finite linear combination of some of the h;’s, all we need to prove is that inf{d(x, y) :
(x,y) € suppH;} > Oforeveryl € ©,where H;(x, y) = hj(x) — h;(y). TakeI € ®, thenI € © for somej > 0and H; vanishes
on (I x I")U I x IT) hence §(x,y) > 277 for every (x,y) € suppH;. 0O

Proof of (3.e). The desired properties are trivial for @ > 0. Assume then that —1 < o < 0and x € R*. Then f,il S(x, y)*dy
vanishes whenx ¢ (I — 1,1).Ifx € (I — 1, ) then

1 o0
[ swprar =3 | 5(x, y)dy
-1 k=0 ¢ ye(—1,D:27 k=1 <5(x,y) <27k}

< Zz—a(k+l) |{y e(—-1,D):6(x,y) < 2’<}|
k=0

o0
< Zz*(lﬂx)(kﬂ) =" 1)1 o
k=0

Proof of Theorem 2. It is enough to check (2.1) for f = h;. From (3.b) and (3.c) we have

h —h )
/ . W‘W - f N (Z DK 45 (x, y)) (i (%) — hy(y)dy
R ’ R

JjeZ

_ sz(H-ﬂ) /+ X 45 (X, ) (hi(x) — h;(y))dy
R

JjezZ

= Y 3 f )63 () — ) dy.
R

JEL Jedi



26 H. Aimar et al. / J. Math. Anal. Appl. 407 (2013) 23-34

Now, since the support of h;(x) — h;(y) and B(J) are disjoint when j(I) < j the last sum of j reduces to the sum for j < j(I).
On the other hand, for j < j(I) there exists a unique J; € ©’ such that the support of (h;(x) — h;(y)) intersects B(J). Actually
that unique J; is the only ancestor of I in the generation j. With these remarks in mind we have, for x € I, that

/+ M~ M) )y -y 3 2J“+f’>/ (1= %, () + %5 )]ldy
R

y
3(x,y) S0
=172 Y 2 || = - Plre.
j=sjh
.. . hy(x)—h -3 h(x)—h
In a similar way, with x € I, we get that [, ,ég:?y)li%l) dy = zﬁ 2l A |I| . In other words, [, Wdy =

213 ; 1|7 hi(x), as desired. O

A basic identity to obtain a characterization of the Besov type spaces in terms of the Haar system is contained in
Theorem 4.

Theorem 4. Let 0 < A < 1, be given, then the identity

_ 2
[ B2 by = Y 6. mP [@+ e — ) 22)
Q

1+21
5(x.9) =

holds for every function f € 87 () and c, = 2(2** — 1), where 8+ (#) is the linear span of {h, le ’D*}.
Theorem 4 will be a consequence of some elementary geometric properties of the dyadic system and the distance §.
Lemma 5. (5.a) Set C(J) = [(J x R) U (R" x )]\ (J xJ) for ] € DF, then B(I) N C(J) = & for j(I) > j()).

(5.b) Foreveryl € ®* andeveryj =0, 1, ...,j(I) — 1 there exists one and only one ] € ©’ for which B(J) intersects C(I).
(5.c) ForeachI € ©% we have

D 2N TmB() N C) = I (117 = 1),

j=0 Jedi

where m is the area measure in R?, . > O and ¢, = 2(2** — 1)~ L.
(5.d) Forj > 0,1 € ®" and] € ©*, withI # ],

.10 5= [ [ 200 = MOy ) ~ )y = 0
Q

(5.e) Foreachl € ®7,

D2 = @+ o) T .
=0

Let us start by proving Theorem 4 assuming the results in Lemma 5.

Proof of Theorem 4. Let f be a finite linear combination of some of the Haar functions h; forI € ®%,i.e.f = Doieor L A by
with (f, h;) = 0 except for a finite number of I in ®. From (3.a) and (3.b) in Lemma 3, (5.c), (5.d) and (5.e) in Lemma 5 we

get
fx) — f()/)|2 // i(1-421)
2] X4
/Q S(x, y)1+2A < (X y)

< [ D037 ¢ h) () o — i1y () — By ()] | dxdy

1e®t JenT
= 2NN ) f hy) / / % 4,6, Y)[A () — () 1Thy (x) — By () ldxdy
=0 lent Jent Q
= sz(H—Zk) Z I(f, ) |? // [hy (x) — hy(y)]*dxdy
j=0 et 4

S i mP Y29 [ i)~ ) Pay
4

lent j=0
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A
] o
H o
!
{ ==
T
\I\U\
= Y NP Y 26 LD
leDt j=0
=Y . mlP[e+a) ™ -a]. O

leDt

Proof of Lemma 5. Proof of (5.a). Since j(I) > j(J) we havel C JorI N]J = {J, we divide our analysis in these two cases.
WhenINJ = @, thenIt NJ =@PandI~ NJ = @ and B(I) N C(J) = @. Assume now thatI C J, then B(I) C J x J which s
disjoint from C(J). O

Proof of (5.b). Let] € ®T andj =0, 1,...,j{I) — 1be given. Let J be the only dyadic interval in © such that] 2 I. Then
C(H) NB(J) # ¥.In fact, sinceJ 2 I, thenI C JT orl C J~. Assume for example thatI C J¥, then any point (x, y) w1thx el
and y € J~ belongs to both C(I) and B(J). So that, since for | € © andj < j(I), arguing as in the proof of (5.a), the condition
J D Iis necessary for B(J) N C(I) # ¥, we get the result. O

Proof of (5.c). Let] € ®* be given.Forj =0, 1, ...,j{I) — 1setJ(j, ) to denote the only J € ® for which B(J) N C(I) # ¥,
provided by (5.b). Now from (5.a) we have

jnH—1
Y 2N mBgyncay) = Y 20 Y mBg) N @)
= Jed =0 Jex!
-1
= > 2"mB( (. D) NCw)).
=0
But, as it is easy to see, m(B(/(j, 1)) N C(I)) = 2|I|27/. Hence

HOES!
D AR Tm@BynCm) =201 Yy 22T =g i1 (jI7* —1). O

j=0 Jedi j=0

Proof of (5.d). From (3.c) it is enough to show that ffs(zo ky(x, y)dxdy = O for every I, ] and K € ®* with [ # J, where
ky(x,y) = (hi(x) — hy(y))(h;(x) — h;(y)). We shall divide our analysis into two cases according to the relative positions of I
and J.

Assume first that I N ] = ¢J; more precisely, assume that I is to the left of J. Then ky(x, y) = /| L]I[(Xr g+ x,y) —
X = (X, Y) + Xt = (X, ¥) — Xopt g+ (X, ¥)) + (6= i+ (X, ¥) — XK= se1= (X, ¥) + Xt 50— (X, Y) — X g+ (%, Y))] whose support
is(I xJ)U(J xI).See Fig. 2.

Notice that while I x ] lies above the diagonal, ] x I is contained in {y < x}. When B(K) does not intersect (I x J) U (J x I)
then ffB(K) ky(x,y)dxdy = 0. Assume now that B(K) N [(I x J) U (J x )] # ¢. Since fo ky(x, y)dxdy = 0, if we
show that B(K) N [(I x J) U (J x )] # @ implies (I x J) U (J x I) € B(K) we have [ fB(K) kydxdy = 0. Since the set
BEK)N[IxHUJxD]=[(K~ xKTH)UK' xK)]N[U x]J)U(J x I)]is nonempty, we see that (K~ x KT) N (I xJ) # @.
Since K~ NI # Pand KT NJ # @ and K, I and J are dyadic intervals with I NJ = @, we must have that K~ D Tand K+ D J.
Therefore B(K) O [(I x J) U (J x D].

Let us assume now that I and J are nested. For example that I  J. Fig. 3 depicts in this situation the normalized kernel

ky
it
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A

[ [ I R I R O O

-
I

ky

Fig. 3. Values of T

Since ky(x,y) = ky(y, x) and B(K) is symmetric, we only need to show that ffKJrX,(, ky(x, y)dxdy = 0. When j(K) >
j{J) + 1, suppky N B(K) = ¥ and ffB(K) ky(x, y)dxdy = 0. Assume on the other hand that 0 < j(K) < j(J). In this case the

intersection of the support of k; and B(K) can still be empty or, if not, the kernel k; (x, y) on K™ x K~ takes only two opposite
constant non trivial values on subsets of the same area. Hence, again, f f B(K) ky (x, y)dxdy = 0. See Fig. 4 where two possible

positions of K when I & J are illustrated. O

Proof of (5.e). Let us start by computing (j, I, I) forj > 0and I € ®*. From (3.c) we get

LG, LD = // [hy (x) — hy (y)]*dxdy
4j

=" Z// [4X5q) + Xcayldxdy
i B()

Jedl
= 417" “m(B() NBMO) + [T " m(B(J) N C1))
Je Je

forj > 0and I € ©*. Hence, since from (3.a) and (3.c), B(J) N B(I) = ¢ for I # ] and then applying (5.c)

D20y LD =Y 2N LAy " mBg) NBM) + 1171 mB¢) N CD)
j=0 jz0 Jeoi Jeni

1o 12 -
— 4|” 12](1)(]+2)\.)7 +C)L (|I| 2k _ »1)

= 2+cy) |I|_2)\ —C. O

For 0 < A < 1, a function f € I? is said to belong to the Besov space B%ﬁ dy if the function % belongs to L*(Q, 5‘1(’:1;’) ).

In other words, f € Bé,dy if and only if

F) —FOP
I, = WP + / sy

is finite.
For our purposes the main result concerning Bﬁ\, 4y is the following Haar wavelet characterization of the Besov space. For
the classical nondyadic Euclidean case see for example [10].

Theorem 6. Let 0 < A < 1 be given. The space Bé’ dy coincides with the set of all square integrable functions on R for which

2

Ient

2

(. h)
I

1

i 12\ 2
(o) > is equivalent to ||f||B% W
Jdy

>

Moreover, |fll;2 + (Z,em
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' |

Fig. 4. On the left, K equals J, and on the right, K is the father of J.

Proof. We start by noticing that, from the definition of Q as a union of the squares (k—1, k), k € Z*, there is no interference

2\ 2
between blocks corresponding to different values of k and then it is enough to prove that [|f || 2o 1)+ <Z,€©$ ) ( W;if?'” ) )
. . S \T
is equivalent to |[f [l 20 1) + (ff(o 0?2 %) JWith®l | = {le®*:1c (0, D}
2

Assume then that f is an L2(0, 1) function such that Z’ESJB ) '%:12’2‘ < o0. Let #, be an increasing sequence of finite
subfamilies of D oy With U2, 7 = D 0. and if fi = >, o (f, hi) hy we have both the [?(0, 1) and a.e. pointwise
convergence of f, to f. Then from Fatou’s Lemma we have that

Fx0) —f»P _ AR Al
/./(o 2 8(x,y)1+2 oz dxdy = //(0’1)2 Jim dedy

2
fliminf// @) =L DI
(0,1)

e 00 S(x, y)l+2r

Now, since each f,, € 4(2#), from Theorem 4 we get

[f”(x) fn(_y)| )
/-/(0 o S,y dxdy = Z 1 PR+ e 17 =]

leFy
I(F, hp)?
= Z N
Iei)(m)
hence
2
X hy)
[ Sty o, 3 0
012 Sy e ]

0.1)

In order to prove the opposite inequality let us start by noticing that the identity (2.2) in Theorem 4 provides, by polar-
ization, the following formula which holds for every ¢ and i € §(.#)

// () — o) ¥ (x) — Y (y) dxdy
©.1?

D e ) () [Q+e) T —a]. (2.3)

T
Ie 9(0 1

Sy syt d(xy)

Assume that f € B2 4y~ Since for any {» € 8(#) by (3.d), the function f((x) )1‘/1%) has support at a positive §-distance of the
diagonal A, we have that it is bounded on (0, 1) Hence L&=YW ¢ 12((0, 1)2, dxdy). Taking in (2.3) f, = Yier, (> )y

8(x, y)1+2)»
instead of ¢ with #, as before, we get

Jo) = fo0) Y (X) — Y (y) dxdy o
//(0 2 (X, ¥)* Sy Sy ,;n, ¢ b i [@+) I 25
(vr,hy)#0

Now since f, (x) — fo(y) tends f (x) — f(y) in L?((0, 1)?, dxdy) and ¢ € $(#) we get
f/ fQ) —f@) ¥ —¥(y) dxdy
(0.1)2

DO G ) [@+ e T =]

T
Ie 9(0 1

Sy Syt sy
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We have to prove that ) l(fmhz’A is finite. This quantity can be estimated by duality, since

Z I(F, hi) P Z (f, hr)
l
lent |I|2A le’D+ |I|)L
.1 ©.1)

where the supremum is taken on the family of all sequences (b;) with Z,e% ) b? < 1and b; = 0 except for a finite number

of I's in ©(+0,1)- Notice that every such sequence (b;) can be uniquely determined by the sequence of Haar coefficients of the

function v = Y by [I| 7 [(2+c)) 1|7 —c, 17 'hy € (). Infact, by = (¥, hy) I [(2+c;) [I|** —c,]. Hence the condition
_ 2

Y o+ b7 < 1becomes 2,6%’1) (W )’ P [Q+c) ™ =] < 1.50

0,1

h
s LMy > G mere ™ —a]

A
Ient I len

0.1 (0,1)

:// f —fy) yx —¥(y) dxdy
oz S * sx )t (X )

ff (lf(X)—f(v)|>2 dxdy // (W(x)—wn)z dxdy
©.1)2 3(x,y)* 5(x,y) ©.1)2 3(x,y)* 3(x,y)
I 1l

2dy

IA

IA

- -yl du 2% 2 2
since ff(o.l)Z (W) 5(“{) Z:gﬁ W IR+ ) ™ —]? < 1fory € $(#). O

As a corollary of Theorem 6 we easily obtain the following density result.

Corollary 7. For f € B;dy with Pof = Oand f, = Z,Eﬂ (f, hp) hy with F, C Fnyq, Fy finite and UR | F, = D+, we have
fo— finB;, asn — oo.

The above result allows to extend Theorem 2 to dyadic Besov functions with vanishing means between integers.
Theorem 8. Let 0 < 8 < A < 1 be given. Then for each f € B2 dy With Pof = 0, we have

2f —1 F& —=f®
28 Jp+ S(x, )P

D TP by () =

leDt

(2.4)

as functions in 2.

Proof. For f, as in Corollary 7, Theorem 2 provides the identity (2.4). Hence to prove (2.4) in our new situation, it suffices to
prove that both sides in (2.4) define bounded operators with respect to the norms Bé.dy in the domain and L? in its image.
For the left hand side, we see that '

I(F, b))
YU | =Y PR (WI)

et Ient

which is bounded by the 32 .dy norm of f from Theorem 6. For the operator on the right hand side of (2.4) we start by splitting
the integral in the following way

f(X)—f(V)d =/ f(X)—f(y)d / f&x) — f(y)y
rt+ 8(x, y)1TP S(x,y)<2 S(x,y)1+h S(x,y)>2 S(x, )1+

Applying (3.e) in Lemma 3 we obtain that the L? norm of the first term in the right is bounded by

W) — F) L dy If %) —FW)I?
/R+ (_/[;] S(x, y)1+2x dy) (/{Zq S(x, y)l—Z(k—ﬁ)> dx = CfQ S(x, y)l+2x dydx’
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as desired. On the other hand the square of the L?> norm of the second term is bounded by

[ ([ orsuon o de</ (/ (If(X)|+lf(v)l)2dy> (/ dy )dx
Rt S(x,y)>2 5(}( y)# (S(x’y)# = Jr+ §(x,y)>2 S(Xsy)H—ﬁ 8(x,y)=>2 S(X,y)1+ﬂ

)P o
=C —————dydx < C <C O
/11;+ /(xy)>2 S(x, y)1+h = CIfl = ||f||3§,dy

3. The main result

In this section we state and prove a detailed formulation of Theorem 1. With the operator D? and the spaces B} 4y Intro-
duced in Section 2 the problem can now be formally written in the following way
ou
1—_D u inRY x RT
(P)
u(O) =u® inR*.
Theorem 9. For 0 < 8 < A < land u® € B} with Pou® = 0, define
) =— > MW m), t 0. (3.1)

1e®
Then,

(9.a) uis continuous as a function of t € [0, co) with values mB 5.dy and u(0) = u°. In other words, |lu(t) — U(S)HBA — 0 for
s—tandt > 0;

(9.b) u is differentiable as a function of t € (0,00) with respect to the norm ||-|| g and Z—L[‘ = —iDPu; precisely,
2,dy
U—u® 4 jphy s — Owhenh — 0;
Bz,dy
(9.c) there exists Z C RT with |Z| = 0 such that the series (3.1) defining u(t) converges pointwise for every t € [0, 1) outside

Z;
(9.d) u(t) — u® pointwise almost everywhere on R* when t — 0.

Notice that pointwise convergence is not a consequence of convergence in the B% 4y norm. In fact, with the standard

notation for the Haar system h{c(x) = Z%h(zfx — k), we define a sequence of functions supported in (0, 1) in the following
way. Let n be a given positive integer. Then there exists one and only one j = 0, 1, 2, ... such that 2 < n < 2741 Set
fo=2"1 |- Then [full2 = 272 which tends to 0 as n — oc. Since D*f, = 2’%th’n72j = 2% | = 2’1'(%’”}1’“72},
we see that for0 < A < 3,
pointwise.

Before proving Theorem 9 we shall obtain some basic maximal estimates involved in the proofs of (9.c) and (9.d). With
Mgy, we denote the Hardy-Littlewood dyadic maximal operator given by

D*f, ||L2 — 0asn — oo.Hence f, — 0in the Bﬁ_dy sense. Nevertheless f, does not converge

Mof 00 = sup - / F o) dy

where the supremum is taken on the family of all dyadic intervals I € © for which x € I. Calderén’s sharp maximal operator
of order A is defined by

1
M}f(x) = U 1 f] If ) = f (0l dy,

where the supremum is taken on the family of all subintervals (dyadic or not) J of Rt such that x € J. In [5], see Corollary
11.6, DeVore and Sharpley prove that the L, norm of M}’ f is bounded by the B; norm of f. For our purposes the case p = 2
is of particular interest,

[MEF]Le < ANFl (32)

When dealing with (9.c) and (9.d) two maximal operators related to the series (3.1) are also relevant. For t > 0 set

where S/'f (x) = i Z eit?” <f, hlk> h;((X).

Jj=0 kezt+

Sif(x) = sup} .
NeN
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Set
Sf(x) = sup Sf().

O<t<1

The next result contains the basic estimates of S} and S* in terms of Mgy and M.

Lemma 10. Let f € B with0 < B < A < 1and Pof = 0. Then with C := 2*~#T1(2*~F — 1) we have

(10.a) S/f(x) < Cthf(x) + 2Mgyf (x) for t > 0 and x € R™;
(10.b) S*f(x) < CMff(x) + 2Mgyf (x) for x € R™;
(10.c) |IS*fll;2 < (AC+2) ||f||3‘3: where A is the constant in (3.2).

Proof. Forf € B, t > 0and N € N, we have
S| < [N — Spf | + [Sof )] - (33)

Since S(’)V f(x) = Pyf(x), where Py is the projection over the space Vy of functions which are constant on each I € ©V, we
have supy !S(’)Vf(x)| < Mg,f (x). Let us now estimate the first term on the right hand side of (3.3). Forx € R* andj € N, let

k(x,J) € Z*, be the only index for which x € I, ;.

Y Y - RATAC)

j=0 kezt+

N i . .
@ — 1) ( /ﬂ o) —F @I, (y)dy) M0 )
j=0

k(j.x)
o0
e A
J

=0 ”kv.x)

IS{f (%) — Sf ()]

IA

IA

oy ﬁ F ) — Fx)l dy

’k()',x)

1

eithﬁ _ 1‘

o0
‘ Z t2i*
Jj=0

i 1+ f f@ —fldy
k(i,x) k(i,x)

IA

2t (Z 2“/3)1') MEf (), (34)
j=0

which proves (10.a). The estimate (10.b) follows from (10.a) by taking supremum for t < 1. To show (10.c) we invoke (3.2),
and the [ boundedness of the Hardy-Littlewood dyadic maximal operator. O

The next lemma gives the pointwise convergence of SNg(x) for every x € R™ in a dense subspace of Bé.

Lemma 11. Let g be a Lipschitz function defined on R™. Then
N
s 0
g0 =Y 3 ¢ (g, H) K
j=0 kez*
converges when N — o0, for every x € R* and every t > 0.

Proof. Fixt > 0 and x € R™. We shall prove that (Sf’g(x) :N =1, 2,...)is a Cauchy sequence of complex numbers. In
fact,for1 <M <N,

ISfg(x) — SM"g ()|

> Y o oo

j=M+1 kez+
N j . .
=12 2 e’ < / B —g(X)]h’k(y)dy> I (x)
j=M+1kez+ RT
N .
=2 ) “g'||002’/. x — yldyx, (x)
j=M+1kez+ Ii k

N N
el > 2 [ w-viav=lgl, Y 27 o

j=M+1 Yl j=M+1
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Proof of Theorem 9. Proof of (9.a). From Theorem 6 we see that for each t > 0, u(t) € B 4y Since u’ € By C B} dy
Moreover, for t, s > 0,

lu(t) — u(S)IIB;dy =

5 (e o)l

+ A
le® Bz,dy
0 .2
_ Z Pt # _ eis\l\_ﬁ‘ u h 2, Qitlll~* is|1|—5‘2 (u ’h’)
= } : 2%
ledt leDt I

which tends to zero if s — t. O

Proof of (9.b). Let us prove that the formal derivative of u(t) is actually the derivative in the sense of B Fn fact,fort > 0

Zdy
and hsuchthatt +h >0

2 2

u(t+h) —u) . T
%_,Zeﬂ” ﬁ|I| ﬂ(uo,h,>h, _

o ihl1|=F _
Z eith=* |:eh] —illl_ﬁ:| (u, )y

leDt B;Ef leDt 3’3;5
s [ 1 . 2 il _ 1 2 (ue, hl)’2
s e | i W |+ Y — i s
leDt 2 ledt I
2 2
™ B _1 ue, hy
<CZ |I|2/_‘3 _l|1|7ﬂ |< ZA)’
lent I
2
. w0 i1 —B ihll|— X
Since, from Theorem 6, Y, o+ % < oo, and I[P |&—— —i|I| P2 = | T ﬂh —i]*> - 0ash — O for each

I € ©7, we obtain the result.
On the other hand since u(t) € B2 dy and since A > B, DPu(t) is well defined and it is given by

du
pPucty =D [ 3 e (W0 hiny ) = D7 e 1A (w0 —i—
u(t) ( e (u® e =7 (u®, hy) by ldt

leDt lent
Hence u(t) is a solution of the nonlocal equation and (9.b) is proved. O

Proof of (9.c). The boundedness properties of S and S* and the pointwise convergence on a dense subset of B% allow us to

use standard arguments for the a.e. pointwise convergence of SN u° for general u° € B%. We shall prove that the set Z of all
points x in R™ such that for some t € (0, 1)

Li(x) == inf sup |Sfu’(x) — S!"u’(x)| > 0
N n,m>N
has measure zero. It is enough to show that for each ¢ > 0, the Lebesgue measure of the set {x € R* : L;(x) > & for some t €
(0, 1)} vanishes. Since, for any Lipschitz function v defined on R* and every t € (0, 1),

|Sfu’(x) — ST’ ()| < [SP® — V)@ + [Sfvx) — STVE)| + S (v —

from Lemma 11, we have L;(x) < 25*(u® — v)(x). So that, from (10.c) we obtain

|{x € R* : L(x) > e forsomet € (0, D}| < erR+ (S — v)(x) > g”

4. 2 AAC+2)? 2
= Slse=vle = ——— "=l
Since v is an arbitrary Lipschitz function in R* we get that |Z| = 0. Hence for every t € [0, 1) and every x & Z,

(Sfuo(x) :n=1,2,...)is a Cauchy sequence which must converge to its L? limit, i.e. u(t)(x) forx ¢ Zand t € [0, 1). O
Proof of (9.d). For x ¢ Z, taking the limit as N — oo in (3.4) we get the maximal estimate
lu@®)®) — u’ )| - 24P
t€(0,1) t T 1-270-h

Ml (x).

Since M u® belongs to L2, the left hand side is finite almost everywhere, hence u(t)(x) — u’(x) ast — 0 almost
everywhere. 0O
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