期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:474 |
Affine Killing complete and geodesically complete homogeneous affine surfaces | |
Article | |
Gilkey, P. B.1  Park, J. H.2  Valle-Regueiro, X.3  | |
[1] Univ Oregon, Math Dept, Eugene, OR 97403 USA | |
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea | |
[3] Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain | |
关键词: Quasi-Einstein equation; Geodesic completeness; Killing completeness; | |
DOI : 10.1016/j.jmaa.2019.01.038 | |
来源: Elsevier | |
【 摘 要 】
An affine manifold is said to be geodesically complete if all affine geodesics extend for all time. It is said to be affine Killing complete if the integral curves for any affine Killing vector field extend for all time. We use the solution space of the quasi-Einstein equation to examine these concepts in the setting of homogeneous affine surfaces. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2019_01_038.pdf | 405KB | download |