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quasi-Einstein equation to examine these concepts in the setting of homogeneous 
affine surfaces.
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1. Introduction

Let M be a connected smooth manifold of dimension m which is equipped with a torsion free connec-
tion ∇ on the tangent bundle of M ; the pair M = (M, ∇) is said to be an affine manifold. If g is a 
pseudo-Riemannian metric on M , then the corresponding affine structure is obtained by taking ∇ to be the 
Levi-Civita connection. However, not all affine structures arise in this fashion; such structures are said to 
be not metrizable. A diffeomorphism from one affine manifold to another is said to be an affine map if it 
intertwines the two connections.

Let ΦX
t be the local 1-parameter flow of a vector field X on M . The following 3 conditions are equivalent 

and if any is satisfied, then X is said to be an affine Killing vector field (see Kobayashi and Nomizu [10]):

(1) ΦX
t is an affine map where defined.

(2) The Lie derivative of ∇ with respect to X vanishes.
(3) [X, ∇Y Z] −∇Y [X, Z] −∇[X,Y ]Z = 0 for all smooth vector fields Y and Z.
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Let K(M) be the set of affine Killing vector fields. The Lie bracket gives K(M) the structure of a real 
Lie algebra. Furthermore, if X ∈ K(M), if X(P ) = 0, and if ∇X(P ) = 0, then X ≡ 0. Consequently, 
dim{K(M)} ≤ m +m2; if equality holds, then M is flat. An affine Killing vector field is said to be complete
if the flow ΦX

t exists for all t.
Let Aff(M) be the Lie group of all affine diffeomorphisms of M. The Lie algebra of Aff(M) is the space 

of complete affine Killing vector fields. We say that M is affine Killing complete if all affine Killing vector 
fields are complete or, equivalently, the Lie algebra of Aff(M) is K(M). Consequently, determining whether 
or not M is affine Killing complete is a central geometrical question.

A smooth curve σ(t) in M is said to be a geodesic if ∇σ̇σ̇ = 0. We adopt the Einstein convention
and sum over repeated indices to expand ∇∂xi∂xj = Γij

k∂xk in a system of local coordinates. If σ(t) =
(x1(t), . . . , xm(t)), then σ is a geodesic if and only if the geodesic equation is satisfied, i.e.

σ̈k + Γij
kσ̇iσ̇j = 0 for all k . (1.a)

M is said to be geodesically complete if every geodesic extends for infinite time. Any geodesically complete 
affine manifold is affine Killing complete (see Kobayashi and Nomizu [10]) but the converse fails as we shall 
see presently.

If Aff(M) acts transitively on M , then M is said to be affine homogeneous; there is a corresponding local 
theory if the diffeomorphisms in question are only assumed to be locally defined. The classification of locally 
homogeneous affine surfaces by Opozda [12] may be described as follows. Up to isomorphism, there are two 
simply connected Lie groups of dimension 2, the translation group R2 and the ax + b group R+ ×R. A left 
invariant affine structure on R2 (resp. on R+×R) is said to be Type A (resp. Type B). These geometries are 
globally homogeneous; Aff(·) acts transitively on such geometries. Every locally homogeneous affine surface 
is either modeled on a Type A geometry, on a Type B geometry, or on the geometry of the round sphere 
S2 in R3 with the Levi-Civita connection.

Any Riemannian metric on a compact manifold is complete. Thus the sphere is geodesically complete. 
Similarly, any vector field on a compact manifold is complete and thus the sphere is Killing complete. For 
that reason, we will concentrate on studying the Type A and Type B geometries in this paper. We emphasize 
that geodesic completeness (resp., affine Killing completeness) is equivalent to prolonging a system of second 
order (resp., first order) non-linear ODEs. Even in the homogeneous setting these equations can be quite 
unmanageable. Consequently, instead of a direct approach, we shall follow a different ansatz making use 
of the affine quasi-Einstein equation. We will examine Killing completeness for both the Type A and the 
Type B geometries. However, we will examine geodesic completeness only in the context of the Type A
geometries as the quasi-Einstein equation proves not to be terribly useful in studying geodesic completeness 
for the Type B geometries.

1.1. The Hessian, the curvature, and the quasi-Einstein equation

Set

Hφ = (∂xi∂xjφ− Γij
k∂xkφ)dxi ⊗ dxj ∈ S2(M) .

Define the curvature operator R(·, ·) and the Ricci tensor ρ(·, ·) by setting:

R(u, v) := ∇u∇v −∇v∇u −∇[u,v] and ρ(x, y) := Tr{z → R(z, x)y} .

As the Ricci tensor need not be symmetric, we introduce the symmetrization ρs(x, y) := 1
2{ρ(x, y) +ρ(y, x)}. 

Let Q(M) be the solution space of the quasi-Einstein equation:

Q(M) := {φ ∈ C∞(M) : Hφ + φρs = 0} .
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1.2. Strong projective equivalence

We say that two affine connections ∇ and ∇̃ are strongly projectively equivalent if there exists a smooth 
function ϕ so that ∇̃XY = ∇XY + Y (ϕ)X + X(ϕ)Y . In this setting, we shall say that ϕ provides a strong 
projective equivalence from M = (M, ∇) to ϕM := (M, ∇̃). We say that M is strongly projectively flat if 
M is strongly projectively equivalent to a flat connection.

We will prove the following result in Section 2.

Lemma 1.1. Let M = (R2, ∇) be a Type A geometry. There exists a linear function ϕ(x1, x2) = a1x
1 +a2x

2

which provides a strong projective equivalence from M to a flat Type A geometry and which satisfies e−ϕ ∈
Q(M).

There is a close relationship between strong projective equivalence and the solutions of the quasi-Einstein 
equation. We refer to Brozos-Vázquez et al. [4] and to Gilkey and Valle-Regueiro [9] for the proof of the 
following result.

Theorem 1.2. Let M = (M, ∇) be a simply connected affine surface.

(1) If φ ∈ Q(M) with φ(0) = 0 and dφ(0) = 0, then φ ≡ 0.
(2) dim{Q(M)} ≤ 3.
(3) dim{Q(M)} = 3 if and only if M is strongly projectively flat.
(4) Q(ϕM) = eϕQ(M).
(5) Let (M, ∇) and (M̃, ∇̃) be two strongly projectively flat affine surfaces and let Φ be a diffeomorphism 

from M to M̃ . If Φ∗Q(M̃, ∇̃) = Q(M, ∇), then Φ∗∇̃ = ∇.

By Theorem 1.2, Q transforms conformally under strong projective deformations. Since the unparame-
terized geodesic structure is not altered by projective deformations, Q is intimately related with the affine 
geodesic structure in this instance.

1.3. Type A geometries

The Christoffel symbols of a Type A structure on R2 take the form Γ = Γ(a, b, c, d, e, f) for 
(a, b, c, d, e, f) ∈ R

6 where

Γ(a, b, c, d, e, f) :=
{

Γ11
1 = a, Γ11

2 = b, Γ12
1 = Γ21

1 = c

Γ12
2 = Γ21

2 = d, Γ22
1 = e, Γ22

2 = f

}
.

Let M(a, b, c, d, e, f) be the corresponding affine structure on R2.

Definition 1.3. We define the following Type A affine structures Mj
i (·) on R2; a direct computation then 

establishes Q:

M6
0 := M(0, 0, 0, 0, 0, 0), Q(M6

0) = Span{1, x1, x2}.
M6

1 := M(1, 0, 0, 1, 0, 0), Q(M6
1) = Span{1, ex1

, x2ex
1}.

M6
2 := M(−1, 0, 0, 0, 0, 1), Q(M6

2) = Span{1, ex2
, e−x1}.

M6
3 := M(0, 0, 0, 0, 0, 1), Q(M6

3) = Span{1, x1, ex
2}.

M6
4 := M(0, 0, 0, 0, 1, 0), Q(M6

4) = Span{1, x2, (x2)2 + 2x1}.



182 P.B. Gilkey et al. / J. Math. Anal. Appl. 474 (2019) 179–193
M6
5 := M(1, 0, 0, 1,−1, 0), Q(M6

5) = Span{1, ex1
cos(x2), ex

1
sin(x2)}.

M4
1 := M(−1, 0, 1, 0, 0, 2), Q(M4

1) = Span{ex2
, x2ex

2
, e−x1+x2}.

M4
2(c) := M(−1, 0, c, 0, 0, 1 + 2c) for c /∈ {0,−1}, Q(M4

2(c)) = Span{ecx2
, e(1+c)x2

, ecx
2−x1}.

M4
3(c) := M(0, 0, c, 0, 0, 1 + 2c) for c /∈ {0,−1}, Q(M4

3(c)) = Span{ecx2
, e(1+c)x2

, x1ecx
2}.

M4
4(c) := M(0, 0, 1, 0, c, 2), Q(M4

4(c)) = Span{ex2
, x2ex

2
, (1

2c(x
2)2 + x1)ex2}.

M4
5(c) := M(1, 0, 0, 0, 1 + c2, 2c), Q(M4

5(c)) = Span{ecx2
cos(x2), ecx

2
sin(x2), ex

1}.

M2
1(a1, a2) := M

(
a2
1 + a2 − 1, a2

1 − a1, a1a2, a1a2, a
2
2 − a2, a1 + a2

2 − 1
a1 + a2 − 1

)
for a1a2 �= 0

and a1 + a2 �= 1, Q(M2
1(a1, a2)) = Span{ex1

, ex
2
, ea1x

1+a2x
2}.

M2
2(b1, b2) := M

(
1 + b1, 0, b2, 1,

1 + b22
b1 − 1 , 0

)
for b1 �= 1,

Q(M2
2(b1, b2)) = Span{ex1

cos(x2), ex
1
sin(x2), eb1x

1+b2x
2}.

M2
3(c) := M(2, 0, 0, 1, c, 1) for c �= 0, Q(M2

3(c)) = Span{ex1
, (x1 − cx2)ex

1
, ex

1+x2}.
M2

4(±1) := M(2, 0, 0, 1,±1, 0), Q(M2
4(±1)) = Span{ex1

, x2ex
1
, (2x1 ± (x2)2)ex

1}.

1.4. Linear equivalence and parametrization

We say that two Type A geometries (R2, ∇1) and (R2, ∇2) are linearly equivalent if some element of 
GL(2, R) intertwines these two geometries. The parametrization of the Type A geometries given below 
in Theorem 1.4 was established by Gilkey and Valle-Regueiro [9]; we also refer to a slightly different 
parametrization given in Brozos-Vázquez, García-Río, and Gilkey [2].

Theorem 1.4. Let M be a Type A structure.

(1) The Ricci tensor of M is symmetric.
(2) The following assertions are equivalent.

(a) Rank{ρ} = 2.
(b) dim{K(M)} = 2.
(c) M is linearly equivalent to M2

i (·) for some i.
(3) The following assertions are equivalent.

(a) Rank{ρ} = 1.
(b) dim{K(M)} = 4.
(c) M is linearly equivalent to M4

i (·) for some i.
(4) The following assertions are equivalent.

(a) Rank{ρ} = 0.
(b) dim{K(M)} = 6.
(c) M is linearly equivalent to M6

i (·) for some i.
(d) M is flat.

Although Mj
i (·) is not linearly equivalent to Mv

u(·) for (u, v) �= (i, j), it can happen that Mj
i (·) is linearly 

equivalent to Mj
i (·) for different values of the parameters involved; for example, we may interchange the 

coordinates x1 ↔ x2 to see that M2
1(a1, a2) is linearly equivalent to M2

1(a2, a1). Giving a precise description 
of the identifications describing the relevant moduli spaces is somewhat difficult and we refer for [2,9] for 
further details as it will play no role here. The notation is chosen so that dim{K(Mj

i (·))} = j.
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1.5. Affine Killing completeness

We will prove the following result in Section 4.

Theorem 1.5. Let M = (R2, ∇) be a Type A surface. Then M is affine Killing complete if and only if M
is linearly equivalent to M6

0, M6
4, M4

3(c), M4
4(c), or to M2

i (·) for some i.

The structures M6
1, M6

2, M6
3, M6

5, M4
1, M4

2(c), and M4
5(c) are, up to linear equivalence, the only 

affine Killing incomplete Type A structures on R2. In Section 3, we will exhibit affine immersions of these 
structures into affine Killing complete Type A surfaces and show thereby these structures can be affine 
Killing completed.

1.6. The geodesic equations

In Section 5, we will establish the following result that reduces the system of geodesic equations to a single 
ODE in the context of Type A structures on R2. This will simplifiy our subsequent analysis enormously; 
it is exactly this step which fails for the Type B geometries and which renders the analysis of the geodesic 
structure of the Type B geometries so difficult.

Theorem 1.6. Let M be a Type A surface. There exists a linear function ϕ so that Q(M) = eϕ Span{1, φ1, φ2}
and so that the map Φ := (φ1, φ2) defines an immersion of R2 in R2. Any geodesic on M locally has the 
form σ(t) = Φ−1(ψσ(t)uσ + vσ) for some smooth function ψσ and for suitably chosen vectors uσ and vσ in 
R

2.

Theorem 1.6 is only a local result; however, since we are working in the real analytic setting, this does not 
affect our ansatz. This point arises in the analysis of Section 6.1.6 for example. Our study of the geodesic 
structure in Type A geometries in Section 7 will be based on Theorem 1.6 and upon a knowledge of Q(M)
which is an analytic invariant; it is not simply a straightforward exercise in computer algebra. The geodesic 
equation is a linked pair of non-linear equations in 1-variable; Theorem 1.6 reduces consideration to finding 
a single function of 1-variable. This approach permits us to determine in Section 7 all the geodesics of the 
affine manifolds Mj

i (·) for j = 4 and j = 6; for j = 2, we obtained ODEs we could not solve although we 
did obtain sufficient information to establish whether or not these geometries were geodesically complete. 
D’Ascanio et al. [5] determined which non-flat Type A geometries were geodesically complete using a very 
different approach. In Section 6, we will establish the following result which extends their results by taking 
into account the flat geometries; we believe it is a more straightforward treatment – it also yields more 
information.

Theorem 1.7. Let M = (R2, ∇) be a Type A surface. Then M is geodesically complete if and only if M is 
linearly equivalent to M6

0, to M6
4, to M4

3(−1
2 ), or to M2

2(−1, a) for some a.

The affine Killing vector fields of a Type A geometry are real analytic. From this it follows that if M̃ is 
an affine surface which is modeled on a Type A geometry M = (R2, ∇) (where ∇ has constant Christoffel 
symbols), then M̃ is real analytic. We say that a Type A structure M on R2 is essentially geodesically 
incomplete if there is no surface M̃ which is modeled on M and which is geodesically complete. It will follow 
from the analysis of Section 6 that any non-flat Type A structure on R2 which is geodesically incomplete 
but not essentially geodesically incomplete is linearly equivalent either to M4

2(−1
2 ) or to M4

5(0); up to linear 
equivalence, M4

2(−1
2 ) and M4

5(0) are the only non-flat Type A structures on R2 which can be geodesically 
completed. This is analogous to the situation when we considered the completion of affine Killing incomplete 
Type A structures on R2.
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1.7. Type B geometries

∇ is a left invariant connection on the ax + b group R+ ×R if and only if Γ = (x1)−1Γ(a, b, c, d, e, f); we 
denote the corresponding structure by N ((x1)−1Γ(a, b, c, d, e, f)).

Definition 1.8. We define the following Type B affine structures N j
i (·) on R+×R; a direct computation then 

establishes Q.

N 6
0 := Γ(0, 0, 0, 0, 0, 0), Q(N 6

0 ) = Span{1, x1, x2}.
N 6

1 (±) := N ((x1)−1Γ(1, 0, 0, 0,±1, 0)), Q(N 6
1 (±)) = Span{1, x2, (x1)2 ± (x2)2}.

N 6
2 (c) := N ((x1)−1Γ(c− 1, 0, 0, c, 0, 0)) for c �= 0,

Q(N 6
2 (c)) = Span{1, (x1)c, (x1)cx2}.

N 6
3 := N ((x1)−1Γ(−2, 1, 0,−1, 0, 0)), Q(N 6

3 ) = Span{1, 1
x1 ,

x2

x1 + log(x1)}.

N 6
4 := N ((x1)−1Γ(0, 1, 0, 0, 0, 0)), Q(N 6

4 ) = Span{1, x1, x2 + x1 log(x1)}.
N 6

5 := N ((x1)−1Γ(−1, 0, 0, 0, 0, 0)), Q(N 6
5 ) = Span{1, log(x1), x2}.

N 6
6 (c) := N ((x1)−1Γ(c, 0, 0, 0, 0, 0)) for c �= 0,−1,

Q(N 6
6 (c)) = Span{1, (x1)1+c, x2}.

N 4
1 (κ) := N ((x1)−1(2κ, 1, 0, κ, 0, 0)) for κ /∈ {0,−1},

Q(N 4
1 (κ)) = Span{(x1)κ, (x1)κ+1, (x1)κ(x2 + x1 log x1)}.

N 4
2 (κ, θ) := N ((x1)−1Γ(2κ + θ − 1, 0, 0, κ, 0, 0)) for κ /∈ {0,−θ} and θ �= 0,

Q(N 4
2 (κ, θ)) = Span{(x1)κ, (x1)κx2, (x1)κ+θ}.

N 4
3 (κ) := N ((x1)−1Γ(2κ− 1, 0, 0, κ, 0, 0)) for κ �= 0,

Q(N 4
3 (κ)) = Span{(x1)κ, (x1)κx2, (x1)κ log x1}.

N 3
1 (±) := N ((x1)−1Γ(−3

2 , 0, 0,−
1
2 ,∓

1
2 , 0)), Q(N 3

1 (±)) = {0}.

N 3
2 (c) := N ((x1)−1Γ(−3

2 , 0, 1,−
1
2 , c, 2)), Q(N 3

2 (c)) = {0}.

N 3
3 := N ((x1)−1Γ(−1, 0, 0,−1,−1, 0)), Q(N 3

3 ) = Span{ 1
x1 ,

x2

x1 ,
(x2)2 − (x1)2

x1 }.

This is the affine structure of the Lorentzian-hyperbolic plane given by

the metric ds2 = (dx1)2 − (dx2)2

(x1)2 .

N 3
4 := N ((x1)−1Γ(−1, 0, 0,−1, 1, 0)), Q(N 3

4 ) = Span{ 1
x1 ,

x2

x1 ,
(x2)2 + (x1)2

x1 }.
This is the affine structure of the hyperbolic plane given by the metric

ds2 = (dx1)2 + (dx2)2

(x1)2 .

We refer to Brozos-Vázquez et al. [3] for the proof of Assertions (1–3) in Theorem 1.9 below. Assertion (4) 
will be established in Section 9 and is the appropriate generalization of Theorem 1.4 (4) to this setting; 
unlike the case of the Type A geometries, there is no classification for the generic case dim{K(N )} = 2 and 
this is why the determination of which of these geometries is geodesically complete is unsettled.
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Theorem 1.9. Let N be a Type B structure on R+ × R.

(1) dim{K} ∈ {2, 3, 4, 6}.
(2) dim{K(N )} = 3 if and only if N is linearly equivalent to N 3

i (·) for some i.
(3) The following assertions are equivalent.

(a) dim{K(N )} = 4.
(b) N is linearly equivalent to N 4

i (·) for some i;
(c) N is also Type A.

(4) The following assertions are equivalent.
(a) dim{K(N )} = 6.
(b) N is linearly equivalent to N 6

i (·) for some i.
(c) N is flat.

We will prove the following result in Section 9.

Theorem 1.10. Let M be a Type B structure on R+ × R.

(1) If dim{K(M)} = 2, then M is affine Killing complete.
(2) If dim{K(M)} = 3, then M is affine Killing complete if and only if M is linearly equivalent to the 

hyperbolic plane.
(3) If dim{K(M)} = 4, then M is affine Killing complete.
(4) If dim{K(M)} = 6, then M is affine Killing complete if and only if M is linearly equivalent to N 6

0 or 
N 6

5 .

The question of geodesic completeness is more subtle and will not be dealt with here since, unlike the 
Type A geometries, we do not have a suitable parametrization of the Type B surfaces where dim{K(N )} = 2.

2. The proof of Lemma 1.1

Let M = (R2, ∇) be a Type A geometry. An affine surface M is strongly projectively flat if and only if 
both ρ and ∇ρ are totally symmetric (see, for example, Eisenhart [7] or Nomizu and Sasaki [11]). A direct 
computation shows that ρ and ∇ρ are in fact totally symmetric if M is Type A and thus every Type A
surface is strongly projectively flat. However, this argument does not show that the associated flat surface 
is again Type A nor does it show that the equivalence can be obtained using a linear function. We proceed 
as follows. Let ϕ(x1, x2) = a1x

1 + a2x
2 for (a1, a2) ∈ R

2. Let M̃ := −ϕM have Ricci tensor ρ̃. We wish to 
choose (a1, a2) so ρ̃ = 0. We suppose first that Γ11

2 �= 0. By rescaling x2, we may assume that Γ11
2 = 1. 

We solve the equation ρ̃11 = 0 for a2 to obtain

a2 := a2
1 − a1Γ11

1 − Γ12
1 + Γ11

1Γ12
2 − (Γ12

2)2 + Γ22
2 .

This yields

ρ̃12 = −Γ22
1 + (a1 − Γ12

2)(a2
1 − a1Γ11

1 − 2Γ12
1 + Γ11

1Γ12
2 − (Γ12

2)2 + Γ22
2)

ρ̃22 = (a1 − Γ11
1 + Γ12

2)ρ̃12 .

The crucial point is that ρ̃12 divides ρ̃22. Thus it suffices to choose a1 so ρ̃12 = 0. Since ρ̃12 is a monic 
polynomial of a1, we can find a1 so ρ̃12 = 0. We now have ρ̃ = 0 so M̃ is flat as desired.



186 P.B. Gilkey et al. / J. Math. Anal. Appl. 474 (2019) 179–193
We suppose next that Γ11
2 = 0. If Γ22

1 �= 0, we can interchange the roles of x1 and x2 and repeat the 
argument given above. We may therefore assume that Γ22

1 = 0 as well. We make a direct computation to see 
that taking a1 = Γ12

2 and a2 = Γ12
1 yields ρ̃ = 0. Since 1 ∈ Q(M̃), we conclude eϕ ∈ Q(M) = eϕQ(M̃). �

3. Affine embeddings and immersions of Type A structures

We introduce an auxiliary affine surface M̃4
5(c) := (R2, ∇) where the only (possibly) non-zero Christoffel 

symbols of ∇ are Γ22
1 = (1 + c2)x1 and Γ22

2 = 2c; this is not a Type A structure on R2. We have

Q(M̃4
5(c)) = Span{ecx2

cos(x2), ecx
2
sin(x2), x1} .

We will show presently in Section 4.3 that Aff(M̃4
5(c)) acts transitively on R2 and consequently this is a 

homogeneous geometry.

Theorem 3.1.

(1) Θ6
1(x1, x2) := (ex1

, x2ex
1) is an affine embedding of M6

1 in M6
0.

(2) Θ6
2(x1, x2) := (ex2

, e−x1) is an affine embedding of M6
2 in M6

0.
(3) Θ6

3(x1, x2) := (x1, ex
2) is an affine embedding of M6

3 in M6
0.

(4) Θ6
4(x1, x2) := (x2, (x2)2 + 2x1) is an affine isomorphism from M6

4 to M6
0.

(5) Θ6
5(x1, x2) = (ex1 cos(x2), ex1 sin(x2)) is an affine immersion of M6

5 in M6
0.

(6) Θ4
1(x1, x2) := (e−x1

, x2) is an affine embedding of M4
1 in M4

4(0).
(7) Θ4

2(x1, x2) := (e−x1
, x2) is an affine embedding of M4

2(c) in M4
3(c).

(8) Θ4
4(c)(x1, x2) := (x1 + 1

2c(x
2)2, x2) is an affine isomorphism from M4

4(c) to M4
4(0).

(9) Θ4
5(c)(x1, x2) := (ex1

, x2) is an affine embedding of M4
5(c) in M̃4

5(c).

Proof. Because dim{Q(·)} = 3, the geometries in question are all strongly projectively flat. The affine maps 
in question intertwine the solution spaces Q(·). Thus Theorem 3.1 follows from Theorem 1.2. �
4. The proof of Theorem 1.5

Let M be a Type A surface model. We have dim{K(M)} ∈ {2, 4, 6}. If dim{K(M)} = 2, then K(M) =
Span{∂x1 , ∂x2}. The flow lines of the affine Killing vector fields are straight lines with a linear parametrization 
and are complete so Theorem 1.5 is immediate. If dim{K(M)} = 6, then M is flat. We apply Theorem 3.1; 
Θ6

i is a diffeomorphism if i = 4 and thus M6
4 is affine Killing complete. Θ6

i is not surjective if i = 1, 2, 3, 5
and thus M6

i is affine incomplete in for these values of i. We complete the proof of Theorem 1.5 by dealing 
with the case dim{K(M)} = 4. By Theorem 1.4 and Theorem 3.1 we may assume that M = M4

3(c), that 
M = M4

4(0), or to replace M by M̃4
5(c). We examine these 3 cases seriatim.

4.1. Case 1. M4
3(c)

We have Q(M4
3(c)) = Span{ecx2

, e(1+c)x2
, x1ecx

2}. This is not a particularly convenient form of this 
surface to work with. We set u1 := x1ecx

2 and u2 := x2 to express Q(M4
3(c)) = Span{ecu2

, e(1+c)u2
, u1}. 

We define

T (a1, b1, c1, c2)(u1, u2) = (ea1u1 + b1e
cu2

+ c1e
(1+c)u2

, u2 + d1) .

Because T (a1, b1, c1, d1)∗Q(M4
3(c)) = Q(M4

3(c)), T (a1, b1, c1, d1) defines a diffeomorphism of R2 preserving 
the affine structure. We verify
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T (a1, b1, c1, d1) ◦ T (a2, b2, c2, d2)

= T (a1 + a2, b2e
a1 + b1e

cd2 , c2e
a1 + c1e

(1+c)d2 , d1 + d2) ,

T (a1, b1, c1, d1)−1 = T (−a1,−b1e
−a1−cd1 ,−c1e

−a1+(−1−c)d1 ,−d1) .

This gives R4 the structure of a Lie group and constructs a 4-parameter family of affine Killing vector fields 
which for dimensional reasons must be K(M4

3(c)) and thereby shows M4
3(c) is affine Killing complete.

4.2. Case 2. M4
4(0)

We have Q(M4
4(0)) = Span{ex2

, x2ex
2
, x1ex

2}. We clear the previous notation and set

T (a1, b1, c1, d1)(x1, x2) := (ea1x1 + b1x
2 + c1, x

2 + d1) .

Since T (a1, b1, c1, d1)∗Q(M4
4(0)) = Q(M4

4(0)), T (a1, b1, c1, d1) is a diffeomorphism of R2 preserving the 
affine structure. The group structure on R4 is given by

T (a1, b1, c1, d1) ◦ T (a2, b2, c2, d2)

= T (a1 + a2, b1 + b2e
a1 , c1 + b1d2 + c2e

a1 , d1 + d2),

T (a1, b1, c1, d1)−1 = T (−a1,−b1e
−a1 , e−a1(b1d1 − c1),−d1) .

It now follows M4
4(0) is affine Killing complete.

4.3. Case 3. M̃4
5(c)

We have Q(M̃4
5(c)) = Span{ecx2 cos(x2), ecx2 sin(x2), x1}. We clear the previous notation and set

T (a1, b1, c1, d1)(x1, x2) := (ea1x1 + b1e
cx2

cos(x2) + c1e
cx2

sin(x2), x2 + d1) .

Then T (a1, b1, c1, d1)∗Q(M̃4
5(c)) = Q(M̃4

5(c)) so T (a1, b1, c1, d1) is a diffeomorphism of R2 preserving the 
affine structure. The group structure is given by

T (a1, b1, c1, d1) ◦ T (a2, b2, c2, d2)

= T (a1 + a2, e
a1b2 + b1e

cd2 cos(d2) + c1e
cd2 sin(d2),

ea1c2 − b1e
cd2 sin(d2) + c1e

cd2 cos(d2), d1 + d2),

T (a1, b1, c1, d1)−1 = T (−a1,−e−a1−cd1(b1 cos(d1) − c1 sin(d1)),

−e−a1−cd1(b1 sin(d1) + c1 cos(d1)),−d1) .

It now follows M̃4
5(c) is affine Killing complete. It is immediate that Aff(M̃4

5(c)) acts transitively on R2 so 
this is a homogeneous geometry.

5. The proof of Theorem 1.6

Let M = (R2, ∇) be a Type A structure on R2. By Lemma 1.1, there exists a linear function ϕ with 
eϕ ∈ Q(M) and so M̃ := −ϕM is flat.

Since eϕ ∈ Q(M) and dim{Q(M)} = 3, we have Q(M) = eϕ Span{1, φ1, φ2}. Set ΞP (φ) :=
{φ, ∂x1φ, ∂x2φ}(P ) for P ∈ R

2. By Theorem 1.2, ΞP is an injective map from Q(M) to R3. Since 
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dim{Q(M)} = 3, ΞP is bijective. It now follows that dφ1(P ) and dφ2(P ) are linearly independent so 
Φ := (φ1, φ2) is an immersion.

By Theorem 1.2, Q(M̃) = Span{1, φ1, φ2} = Φ∗ Span{1, x1, x2} = Φ∗Q(M6
0). Consequently, M̃ =

Φ∗M6
0 by Theorem 1.2. The affine geodesics in M6

0 are straight lines and can be written in the form tu + v

for u and v in R2. Thus the affine geodesics in M̃ locally take the form Φ−1(tu + v). Since M and M̃ are 
strongly projectively equivalent, the unparameterized geodesics of M and M̃ agree. The desired result now 
follows. �
6. The proof of Theorem 1.7

We divide the proof of Theorem 1.7 into 3 cases depending on Rank{ρ} or, equivalently, on dim{K}; each 
is then divided further depending on the particular family involved. We use the ansatz of Theorem 1.6. Let 
σa,b(t) be the affine geodesic with σa,b(0) = 0 and σ̇a,b(0) = (a, b).

6.1. Case 1. The flat geometries M6
i

These geometries all are locally affine equivalent to the affine plane (R2, Γ6
0); this geodesically complete 

affine surface provides a local model for each of these geometries. Θ6
i for i = 1, 2, 3 embeds M6

i in M6
0, Θ6

4
provides a diffeomorphism between M6

4 and M6
0, and Θ6

5 immerses M6
5 in M6

0. Thus M6
i is geodesically 

incomplete for i = 1, 2, 3, 5 and M6
4 is geodesically complete.

6.1.1. M6
0

σa,b(t) = (at, bt). M6
0 is geodesically complete and defines the flat affine plane A2.

6.1.2. M6
1

σa,b(t) = (log(1 + at), bt
1+at ). M6

1 is geodesically incomplete; σa,b(t) is defined for all t ∈ R if and only if 
a = 0.

6.1.3. M6
2

σa,b(t) = (− log(1 − at), log(1 + bt)). M6
2 is geodesically incomplete; no non-trivial geodesic is defined for 

all t ∈ R.

6.1.4. M6
3

σa,b(t) = (at, log(1 + bt)). σa,b(t) is defined for all t ∈ R if and only if b = 0.

6.1.5. M6
4

σa,b(t) = (at − 1
2b

2t2, bt). M6
4 is geodesically complete.

6.1.6. M6
5

σa,b(t) =
(

1
2 log((1 + at)2 + b2t2), arctan

(
tb

1+at

))
. σa,b(t) extends to be defined for all t ∈ R if and only 

if b �= 0.

6.2. Case 2: The geometries M4
i (·)

For these geometries, the Ricci tensor is a non-zero constant multiple λ of dx2⊗dx2. Suppose there exists 
a geodesically complete affine surface M̃ which is modeled on M4

i (·). Let σ be a small piece of a geodesic 
in M4

i (·) defined by σ(t) = (x1(t), x2(t)) which can be copied into M̃. Then ρ(σ̇, σ̇)(t) = λ(ẋ2(t))2 extends 
to a real analytic function on M̃ which is defined for all t. If we can exhibit a geodesic where ẋ2(t) is not 
bounded, it then follows that M4

i (·) is essentially geodesically incomplete.
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6.2.1. M4
1

This geometry is essentially geodesically incomplete because

σa,b(t) =
{

(− log(1 − a log(2bt+1)
2b ), 1

2 log(2bt + 1)) if b �= 0
(− log(1 − at), 0) if b = 0

}
.

6.2.2. M4
2(c)

If c �= −1
2 , then σa,b(t) is given by:

⎧⎪⎨
⎪⎩

(log( b
a+b ) − log(1 − a(2bct+bt+1)

1
2c+1

a+b ), log(2bct+bt+1)
2c+1 ) if b �= 0, b �= −a

(− log(1+b(t+2ct)),log(1+bt+2bct))
1+2c if b �= 0, b = −a

(− log(1 − at), 0) if b = 0

⎫⎪⎬
⎪⎭ .

This geometry is essentially geodesically incomplete. If c = −1
2 , then

σa,b(t) =

⎧⎪⎨
⎪⎩

(− log(1 − at), 0) if b = 0
(− log(a(ebt − 1) − b) + log(−b), bt) if b < 0
(− log(−a(ebt − 1) + b) + log(b), bt) if b > 0

⎫⎪⎬
⎪⎭ .

This geometry is geodesically incomplete. By Theorem 3.1, there is an affine embedding of M4
2(−1

2 ) in 
M4

3(−1
2). Since we shall show presently that Γ1

3(−1
2 ) is geodesically complete, the geometry M4

2(−1
2 ) can 

be geodesically completed.

6.2.3. M4
3(c)

If c �= −1
2 , let κ := 1 + 2c. This geometry is essentially geodesically incomplete since

σa,b(t) =
{ (

a
b ((1 + btκ)1/κ − 1), κ−1 log(1 + btκ)

)
if b �= 0

(at, 0) if b = 0

}
.

If c = −1
2 , then this geometry is geodesically complete since

σa,b(t) =
{

(ab (ebt − 1), bt) if b �= 0
(at, 0) if b = 0

}
.

6.2.4. M4
4(c)

This geometry is essentially geodesically incomplete since

σa,b(t) =
{

(at, 0) if b = 0
(− 1

8b log(1 + 2bt)(−4a + bc log(1 + 2bt)), 1
2 log(1 + 2bt)) if b �= 0

}
.

6.2.5. M4
5(c)

This has an affine embedding in M̃4
5(c) which is not surjective and hence M4

5(c) is geodesically incomplete.

6.2.6. M̃4
5(c)

We have ρ = (1 + c2)dx2 ⊗ dx2. If c = 0, then

σa,b(t) =
{

(at, 0) if b = 0
(a sin(bt), bt) if b �= 0

}
.

b
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This geometry is geodesically complete. If c �= 0, then this geometry, and hence the geometry M4
5(c), is 

esentially geodesically incomplete because

σa,b(t) =
{

(at, 0) if b = 0(
a
b (1 + 2bct)1/2 sin( log(1+2bct)

2c ), log(1+2bct)
2c

)
if b �= 0

}
.

If b �= 0, then ẋ2 does not remain bounded for all t. Thus all geodesics but one can not be completed. Since 
M4

5(c) embeds as an open subset of M̃4
5(c), this shows M4

5(c) also is essentially geodesically incomplete for 
c �= 0.

6.3. Case 3. The geometries M2
i (·)

Suppose that M̃ is a simply connected complete affine surface which is locally modeled on M2
i (·). Since 

dim{K(M̃)} = 2, ∂x1 and ∂x2 extend as Killing vector fields to all of M. This shows that if γ is a geodesic 
in M2

i (·), then ρ(γ̇, ∂xi) is a bounded function on γ. We use this criteria in what follows. In all cases, 
attempting to find the most general geodesic resulted in an ODE that we could not solve explicitly.

6.3.1. M2
1(a1, a2)

We obtain 3 possible geodesics σi(t) = log(t)�αi where

�α1 = (1, 1)
1 + a1 + a2

, �α2 = (1 − a2, a1)
1 + a1 − a2

, �α3 = (a2, 1 − a1)
1 − a1 + a2

.

The first geodesic is defined for a1+a2+1 �= 0, the second for a1−a2+1 �= 0, and the third for −a1+a2+1 �= 0. 
At least two geodesics are defined for any given geometry. We have σ̇ = 1

t (c, d) for (0, 0) �= (c, d) ∈ R
2. Thus 

this geometry is essentially geodesically incomplete.

6.3.2. M2
2(a1, a2)

Suppose a1 �= −1. We have a geodesic σ(t) = log(t)( 1
1+a1

, 0). We conclude the geometry is essentially 
geodesically incomplete. Suppose a1 = −1. We adapt an argument of Bromberg and Medina [1]. The geodesic 
equations become u̇ = v(2au̇− 1

2 (1 + a2)v) and v̇ = v(2u) or in matrix form:

A

(
u

v

)
= v

(
u̇

v̇

)
for A :=

(
−2a 1

2 (1 + a2)
−2 0

)
.

If v(t0) = 0 for any point in the parameter range, then u(t) = u(t0) and v(t) = 0 solve this ODE. Thus we 
may suppose without loss of generality v does not change sign. Introduce a new parameter τ so ∂τ t = v(t)
and let U(τ) = u(t(τ)) and V (τ) = v(t(τ)). We have

∂τ

(
U

V

)
= A

(
U

V

)
. (6.a)

The eigenvalues of A are −a ±
√
−1. We solve Equation (6.a) to see

(
U

V

)
= e−τa

{
cos(τ)

(
c1
c2

)
+ sin(τ)

(
−ac1 + 1

2 (1 + a2)c2
−2c1 + ac2

)}
.

Thus V = e−τa(c2 cos(τ) +(−2c1 +ac2) sin(τ)). Since V never vanishes, τ is restricted to a parameter range 
of length at most π. It now follows that the original geodesic is for all t ∈ R.
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6.3.3. M2
3(c) and M2

4(±)
We have σa,0 = (1

2 log(1 + 2at), 0) so these geometries are essentially geodesically incomplete.

7. The classification of flat Type B geometries

This section is devoted to the proof of Theorem 1.6 (4); by Theorem 1.2, it suffices to classify the relevant 
solution spaces of the quasi-Einstein equation. Let Q = Q(N ) where N is a flat Type B structure on R+×R. 
We work modulo the action of the shear group (x1, x2) → (x1, ax1 + bx2) for b �= 0. Let Φ = (φ1, φ2) be a 
local affine map from N to M6

0. We then have

Q = Φ∗ Span{1, x1, x2} = Span{1, φ1, φ2} .

Since Φ is a local diffeomorphism, ∂x1Q �= {0} and ∂x2Q �= {0}. This rules out certain possibilities.
The vector fields X := x1∂x1 +x2∂x2 and Y := ∂x2 are Killing vector fields and therefore preserve Q; the 

action of the Lie algebra Span{X, Y } on Q is crucial. We complexify and set QC := Q ⊗R C; elements of Q
may be obtained by taking the real and imaginary parts of complex solutions. Decompose QC = ⊕λQλ as 
the direct sum of the generalized eigenspaces of X where

Qλ := {f ∈ QC : (X − λ)3f = 0} .

The commutation relation [X, ∂x2 ] = −∂x2 implies that

∂x2Qλ ⊂ Qλ−1 .

Choose λ and f ∈ Qλ so ∂x2f �= 0. This implies Qλ−1 �= 0. Thus, for dimensional reasons, dim{Qμ} ≤ 2
for all μ and consequently

Qμ = {f ∈ QC : (X − μ)2f = 0} .

Since dim{Q} = 3, {Qλ, Qλ−1, Qλ−2, Qλ−3} can not all be non-trivial and thus, in particular, (∂x2)3f = 0
for any f ∈ Qλ. This implies any element of Q is a polynomial of degree at most 2 in x2 with coefficients 
which are smooth functions of x1. If (X − λ)f = 0, then f is a sum of elements of the form (x1)λ−k(x2)k
for k ≤ 2. If (X − λ)2f = 0, then f is a sum of elements of the form (x1)λ−k(x2)k and (x1)λ−k(x2)k log(x1)
for k ≤ 2. Since dim{Qλ} ≤ 2, this is the most complicated Jordan normal form possible. In principle, the 
parameter λ could be complex. It will follow from our subsequent analysis that this is not the case. We 
adopt the notation of Definition 1.8.

Case 1. Suppose first that there exists f ∈ Q which has degree at least 2 in x2. Let f ∈ Qλ satisfy ∂2
x2f �= 0. 

Then {f, ∂x2f, ∂2
x2f} is a basis for Q. This implies ∂2

x2f = c1 so λ = 2. Since f ∈ Q2, ∂x2f ∈ Q1, and 
1 ∈ Q0, dim{Qμ} ≤ 1 for all μ and there are no log terms. Thus f = (x2)2 + ax1x2 + b(x1)2. We may 
replace x2 by x̃2 = x2 + 1

2ax
1 to ensure a = 0. Since Q = Span{f, 2x2, 1} and since ∂x1{Q} �= 0, b �= 0. 

Rescale x2 and renormalize f to assume that f = (x2)2 ± (x1)2 and obtain N 6
1 (±).

We assume henceforth that every element of Q is at most linear in x2. Since ∂x2{Q} �= {0}, we can choose 
λ so that f = a0(x1)x2 + a1(x1) ∈ Qλ for a0(x1) �= 0. This gives rise to the following possibilities.

Case 2. Suppose λ /∈ {0, 1}. Then Qλ, Qλ−1, and Q0 are non-trivial and distinct; hence each is 1-dimensional 
and Q = Qλ ⊕Qλ−1 ⊕Q0. If λ is complex, then Qλ̄ is non-trivial and is not contained in Qλ ⊕Qλ−1 ⊕Q0
which is impossible. Thus λ is real, as noted above. Since dim{Qλ} = 1, there are no log(x1) terms and 
f = (x1)λ−1x2 + (x1)λc. Replacing x2 by x2 − cx1 then permits us to assume f = (x1)λ−1x2 so Q =
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Span{1, (x1)λ−1, (x1)λ−1x2} for λ �= 0, 1. This is N 6
2 (c) for c = λ − 1 /∈ {−1, 0}. We will deal with N 6

2 (−1)
subsequently.

Case 3. Suppose λ = 0 so that f = a0(x1)x2 + a1(x1) ∈ Q0. We then have a0(x1) = ∂x2f ∈ Q−1. We also 
have 1 ∈ Q0. Thus Q−1 is 1-dimensional so, after rescaling, we may take a0(x1) = (x1)−1 and consequently 
f = x2

x1 + ε log(x1). If ε = 0, we obtain N 6
2 (−1). If ε �= 0, we can rescale to obtain N 6

3 .

Case 4. Suppose λ = 1 so f = a0(x1)x2 + a1(x1) ∈ Q1. Express

f = x2 + x2α log(x1) + βx1 + γx1 log(x1) .

If α �= 0, then X has non-trivial Jordan normal form on Q1 so dim{Q1} ≥ 2. Furthermore ∂x2f = α log(x1) ∈
Q0; since 1 ∈ Q0, dim{Q0} ≥ 2. This is false. Thus α = 0. By replacing x2 by x2 + βx1, we may assume 
β = 0 and obtain f = x2 + γx1 log(x1). If γ �= 0, then applying (X − 1) we see x1 ∈ Q1; this gives, after 
rescaling, N 6

4 . Thus we may assume γ = 0 so x2 ∈ Q1. If dim{Q1} = 2, we obtain N 6
0 . If dim{Q0} = 2, then 

log(x1) ∈ Q0 and we obtain N 6
5 . Otherwise, we obtain N 6

6 (c) for c �= 0, −1. This completes the classification 
of the flat Type B structures. �
8. Affine embeddings and immersions of Type B structures

Define

Ψ6
0(x1, x2) = (x1, x2), Ψ6

1(±1)(x1, x2) = (x2, (x1)2 ± (x2)2),
Ψ6

2(c)(x1, x2) = ((x1)c, (x1)cx2), Ψ6
3(x1, x2) = ( 1

x1 ,
x2

x1 + log(x1)),
Ψ6

4(x1, x2) = (x1, x2 + x1 log(x1)), Ψ6
5(x1, x2) = (log(x1), x2),

Ψ6
6(c)(x1, x2) = ((x1)1+c, x2), Ψ4

1(x1, x2) = (x2 + x1 log(x1), log(x1)),
Ψ4

2(κ, θ)(x1, x2) = (x2, θ log(x1)), Ψ4
3(κ)(x1, x2) = (x2, κ log(x1)).

Theorem 8.1.

(1) Ψ6
i (·) is an affine embedding of N 6

i (·) in M6
0 for any i.

(2) Ψ4
1 is an affine isomorphism from N 4

1 (κ) to M4
3(κ).

(3) Ψ4
2(κ, θ) is an affine isomorphism from N 4

2 (κ, θ) to M4
3(κθ ).

(4) Ψ4
3(κ) is an affine isomorphism from N 4

3 (κ) to M4
4(0).

Proof. These geometries are all strongly projectively flat and the diffeomorphisms in question intertwine 
the solution spaces Q(·). Thus Theorem 8.1 follows from Theorem 1.2. �
9. The proof of Theorem 1.10

This section is devoted to the proof of Theorem 1.10. We apply Theorem 8.1. Let N be a Type B structure 
on R+ × R. We distinguish cases.

Case 1. If dim{K} = 6, then N is linearly equivalent to N 6
i . The map Ψ6

i is an affine embedding of N 6
i in 

R
2 with the flat structure. If i �= 5, the embedding is not surjective and N 6

i is affine Killing incomplete; if 
i = 5, then Ψ6

i is an isomorphism so N 6
5 is affine complete.

Case 2. If dim{K(N )} = 4, then N is linearly equivalent to N 4
i (·). The maps Ψ4

i are affine isomorphisms of 
N 4

i (·) with M4
3(·) or M4

4(0); these are affine Killing complete by Theorem 1.5.
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Case 3. dim{K(N )} = 3. There exists σ ∈ {0, ±1} so that

K(M) = Span{X := 2x1x2∂x1 + ((x2)2 + σ(x1)2)∂2, x
1∂x1 + x2∂x2 , ∂x2} .s

Case 3a. N 3
1 (±) or N 3

2 (c). We have σ = 0. The curve ξ(t) = (x1(t), x2(t)) is a flow curve for X means that 
ẋ1(t) = 2x1(t)x2(t) and ẋ2(t) = x2(t)2. We take ξ(t) = (t−2, −t−1) to solve these equations and to see these 
structures are affine Killing incomplete.

Case 3b. N 3
3 . We have σ = 1. The curve ξ(t) = (x1(t), x2(t)) is a flow curve for X means that ẋ1 = 2x1x2 and 

ẋ2 = (x2)2 + (x1)2. We solve these equations by taking x1(t) = −1
2 t

−1 and x2(t) = −1
2 t

−1. Consequently, 
this structure is affine Killing incomplete. This structure is the Lorentzian-hyperbolic plane; it isometrically 
embeds in the pseudo-sphere which is affine complete. We refer to [6] for a further discussion of these two 
geometries and to [8] for a discussion of the pseudo-group of isometries.

Case 3c. N 3
4 . We have σ = −1. This is the hyperbolic plane and is affine Killing complete.

Case 4. dim{K(N )} = 2. K(N ) = Span{x1∂x1 + x2∂x2 , ∂x2} and N is affine Killing complete.
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