期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:409
The wave equation for the Bessel Laplacian
Article
Ciaurri, Oscar1  Roncal, Luz1 
[1] Univ La Rioja, Dept Matemat & Comp, Logrono 26004, Spain
关键词: Wave equation;    Radial solutions;    Fourier-Bessel expansions;    Heat equation;    Extension problem;   
DOI  :  10.1016/j.jmaa.2013.06.039
来源: Elsevier
PDF
【 摘 要 】

We study radial solutions of the Cauchy problem for the wave equation in the multidimensional unit ball B-d, d >= 1. In this case, the operator that appears is the Bessel Laplacian and the solution u(t, x) is given in terms of a Fourier-Bessel expansion. We prove that, for initial L-p data, the series converges in the L-2 norm. The analysis of a particular operator, the adjoint of the Riesz transform for Fourier-Bessel series, is needed for our purposes, and may be of independent interest. As applications, certain L-p - L-2 estimates for the solution of the heat equation and the extension problem for the fractional Bessel Laplacian are obtained. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_06_039.pdf 318KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次