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THE WAVE EQUATION FOR THE BESSEL LAPLACIAN

ÓSCAR CIAURRI AND LUZ RONCAL

Abstract. We study radial solutions of the Cauchy problem for the wave equation in the multidi-

mensional unit ball Bd, d ≥ 1. In this case, the operator that appears is the Bessel Laplacian and
the solution u(t, x) is given in terms of a Fourier-Bessel expansion. We prove that, for initial Lp

data, the series converges in the L2 norm. The analysis of a particular operator, the adjoint of the
Riesz transform for Fourier-Bessel series, is needed for our purposes, and may be of independent
interest. As application, certain Lp − L2 estimates for the solution of the heat equation and the
extension problem for the fractional Bessel Laplacian are obtained.

1. Introduction and main result

For d ≥ 1, let Bd = {x ∈ Rd : |x| < 1} be the unit ball in Rd. Let us consider the Cauchy problem
for the wave equation in (t, x) ∈ R+ ×Bd

{
∂2

∂t2 u(t, x) = ∆u(t, x),
u(0, x) = F (x), ∂

∂tu(0, x) = G(x).

When the initial data are radial, writing |x| = x, F (x) = f(x), G(x) = g(x), and expressing the
Laplacian in polar coordinates, one is led to the Cauchy problem in (t, x) ∈ R+ × (0, 1)

(1.1)

{
∂2

∂t2 u(t, x) = −Lνu(t, x),
u(0, x) = f(x), ∂

∂tu(0, x) = g(x).

Here

Lν = − d2

dx2
− 2ν + 1

x

d

dx
,

which is symmetric and nonnegative on C2
c (0, 1) ⊂ L2((0, 1), dµν), where the measure is given by

dµν(x) = x2ν+1 dx

and the type index is ν = d/2 − 1. There is no need to consider just half-integer values, so we will
work with a general index ν > −1. The second order partial differential operator above is called the
Bessel Laplacian. The operator Lν can be decomposed as Lν = δ∗νδν , with

(1.2) δν = − d

dx
and δ∗ν =

d

dx
+

2ν + 1
x

.

Let Jν be the Bessel function of order ν, for a fixed ν > −1. It is well known that the functions

φν
n(x) = dn,ν x−νλ1/2

n,νJν(λn,νx), n = 1, 2, . . . ,

form an orthonormal basis in L2((0, 1), dµν), where {λn,ν}n≥1 are the sequence of successive positive
zeros of Jν and dn,ν =

√
2|λ1/2

n,νJν+1(λn,ν)|−1 are normalizing constants. Furthermore, the functions
φν

n(x) are eigenfunctions of Lν with the corresponding eigenvalue λ2
n,ν . The Fourier-Bessel expansion

of a function f is

f =
∞∑

n=1

Pnf,
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2 Ó. CIAURRI AND L. RONCAL

where Pnf is the spectral projection, Pnf = an(f)φν
n and an(f) =

∫ 1

0 f(y)φν
n(y) dµν(y), provided the

integral exists.
The solution of the Cauchy problem (1.1) can be obtained by applying a Fourier method. That

solution u has the Fourier-Bessel expansion given by

(1.3) u(t, x) =
∞∑

n=1

sin(tλn,ν)
λn,ν

Png(x) +
∞∑

n=1

cos(tλn,ν)Pnf(x).

Formally, the solution u is given by

(1.4) u(t, x) = (Lν)−1/2 sin(tL1/2
ν )g(x) + cos(tL1/2

ν )f(x) =: u1(t, x) + u2(t, x).

Our aim is to prove that the series given in (1.3) converges in the L2((0, 1), dµν) norm whenever
g ∈ Lp((0, 1), dµν) and δνf ∈ Lp((0, 1), dµν), provided p is close enough to 2.

We will prove the following theorem.

Theorem 1.1. Assume that g ∈ Lp((0, 1), dµν), f is such that δνf ∈ Lp((0, 1), dµν), and 2 2ν+3
2ν+5 <

p ≤ 2. Then,

(1.5) ‖u1(t, ·)‖L2((0,1),dµν) ≤ C‖g‖Lp((0,1),dµν) for ν ≥ −1/2,

and

(1.6) ‖u2(t, ·)‖L2((0,1),dµν) ≤ C‖δνf‖Lp((0,1),dµν) for ν > 0,

with C independent of t.

In order to prove the inequality (1.5) in Theorem 1.1, we will use E. M. Stein theory of interpolation
of analytic families of operators, adapted to our measure space. We follow the ideas of S. Thangavelu in
[18] and [19, Ch. 4.4] for the Hermite setting, and the original idea can be found in [17]. Nevertheless,
the proof of the inequality (1.6) is new and different from the one given by Thangavelu, because his
ideas cannot be applied in our setting due to a problem of convergence of some series involved. We
will factorize the operator in a smart way, in which we will get some operators that can be estimated
either directly, or by using the inequality (1.5), or by means of results in [1] and [2]. Precisely, the
restriction ν > 0 for the inequality (1.6) comes from the parameter restriction in the boundedness of
the adjoint of the Riesz transform for Fourier-Bessel series.

Some applications can be deduced from our main result. We will show a relationship between
the wave equation solution and the solutions of the heat equation and the extension problem for the
fractional Bessel Laplacian (see section 6). As a consequence, certain Lp − L2 inequalities follow for
these solutions.

The study of the Cauchy problem for the wave equation in (t, x) in R+ × Rd has been thoroughly
developed since 19th century. There are results on the Euclidean space, see [10] and [12], that have
been extended to domains with boundary. For instance, A. Magyar [8] proved Lq → Lp bounds
for the wave operator on the torus for large time, analogous to those by R. S. Strichartz in Rd, see
[16]. Magyar also established this kind of estimates for the wave equation on compact manifolds [9].
Anyway, there are still results that have not been studied in the torus. The intuition is that the
analysis on the surface of the sphere is easier than the one in the torus.

Radial solutions to the wave equation were investigated, in the Euclidean space, by L. Colzani,
A. Cominardi and K. Stempak [5]. They presented a method based on Fourier analysis that gave
them the chance to work with special functions and study singularities of the kernels involved in the
solutions. That paper could inspire further research in our context. Our result is a first step in the
study of radial solutions related to the wave equation in the ball.

The paper is organized as follows. In Section 2 we collect several basic facts about Bessel functions,
Hardy’s inequalities and the theory of analytic families of operators. Sections 3 and 4 contain the
proofs of inequalities (1.5) and (1.6) respectively. Section 5 is devoted to the treatment of the adjoint
Riesz transform associated to Fourier-Bessel expansions, that is involved in the proof of (1.6). Finally,
in Section 6, we study the relationship between the solution of the wave equation and solutions of
other equations.



THE WAVE EQUATION FOR THE BESSEL LAPLACIAN 3

By q we will denote the conjugate value to p, 1 < p < ∞, that is to say 1
p + 1

q = 1. Throughout this
paper, the letter C will denote a positive constant which may change from one instance to another
and depend on the parameters involved. We shall write X ≃ Y when simultaneously X ≤ CY and
Y ≤ CX .

2. Some basic tools

The Bessel function Jν satisfies

(2.1) J ′ν(z) = −ν

z
Jν(z) + Jν−1(z), J ′ν(z) =

ν

z
Jν(z)− Jν+1(z).

From the combination of both, we obtain

(2.2) Jν+1(z) =
(

2ν

z

)
Jν(z)− Jν−1(z).

Recall the well-known asymptotics for the Bessel functions (see [20, Chapter 7])

(2.3) Jν(z) =
zν

2νΓ(ν + 1)
+ O(zν+2), |z| < 1,

and

(2.4) Jν(z) =

√
2
πz

(
cos(z + Dν) + O(z−1)

)
, |z| ≥ 1

where Dν = −(νπ/2 + π/4).
We also take into account some classical estimates on the size of the Bessel function, see [14, (11.10),

(11.11)],

|Ja+ib(t)| ≤ Caeπ|b|t−1/2, t ≥ 1, a ≥ 0, |Ja+ib(t)| ≤ Cae
1
2π|b|ta, t > 0, a ≥ 0

and from here it is not difficult to show that

(2.5) |t−(a+ib)Ja+ib(t)| ≤ Caec|b|(1 + t)−a−1/2

for 0 < t < ∞. This is actually proved for a > −1/2 but it holds for all a by (2.2).
We will use the fact that (cf. [2, (2.6)])

(2.6) λn,ν = O(n), dn,ν = O(1).

Recall the following two forms of Hardy’s inequality: if a < −1 and 1 ≤ p < ∞, then

(2.7)
∫ 1

0

∣∣∣∣
∫ x

0

f(t) dt

∣∣∣∣
p

xa dx ≤ C

∫ 1

0

|f(x)|pxa+p dx;

if a > −1 and 1 ≤ p < ∞, then

(2.8)
∫ 1

0

∣∣∣∣
∫ 1

x

f(t) dt

∣∣∣∣
p

xa dx ≤ C

∫ 1

0

|f(x)|pxa+p dx.

We also need estimates for the Lp-norms of the functions φν
n.

Lemma 2.1. Let 1 ≤ p < ∞ and ν > −1. Then, for ν > −1/2,

‖φν
n‖Lp((0,1),dµν) ≃





n(ν+1/2)− 2(ν+1)
p , p > 2(ν+1)

ν+1/2 ,

(log n)1/p, p = 2(ν+1)
ν+1/2 ,

1, p < 2(ν+1)
ν+1/2 ,

and, for −1 < ν ≤ −1/2, ‖φν
n‖Lp((0,1),dµν) ≃ 1.

For p = ∞, ν > −1/2,
‖φν

n‖L∞((0,1),dµν) ≤ Cnν+1/2,

and, for −1 < ν ≤ −1/2, ‖φν
n‖L∞((0,1),dµν) ≤ C.
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Proof. We have

‖φν
n‖p

Lp((0,1),dµν) =
∫ 1

0

|φν
n(x)|p dµν(x) =

∫ 1

0

(dn,ν x−νλ1/2
n,ν |Jν(λn,νx)|)px2ν+1 dx =: I1 + I2,

where

I1 =
∫ 1/n

0

(dn,ν x−νλ1/2
n,ν |Jν(λn,νx)|)px2ν+1 dx, I2 =

∫ 1

1/n

(dn,ν x−νλ1/2
n,ν |Jν(λn,νx)|)px2ν+1 dx.

For I1, by (2.3) and (2.6),

I1 ≃
∫ 1/n

0

np/2x−νp(nx)νpx2ν+1 dx ≃ np(ν+1/2)

∫ 1/n

0

x2ν+1 dx ≃ np(ν+1/2)−2(ν+1),

by taking into account that the last integral converges when ν > −1. Concerning I2, using (2.4) and
again (2.6),

I2 ≃
∫ 1

1/n

np/2x−νp(nx)−p/2x2ν+1 dx =
∫ 1

1/n

x−p(ν+1/2)+2ν+1 dx.

For ν > −1/2, the latter integral has the size of a constant if −p(ν + 1/2) + 2ν + 1 > −1, which is
equivalent to p < 2(ν+1)

ν+1/2 , and it has the size of np(ν+1/2)−2(ν+1) if p > 2(ν+1)
ν+1/2 . When p = 2(ν+1)

ν+1/2 , we
have that I2 ≃ log n. The case −1 < ν < −1/2 implies that ν + 1/2 is negative, therefore we have
that I2 has the size of a constant if −p(ν + 1/2) + 2ν + 1 > −1, which is equivalent to p > 2(ν+1)

ν+1/2 .
But this last quantity is negative, and so the inequality holds for all positive p. The case ν = −1/2
is obvious.

From these considerations, we obtain

‖φν
n‖p

Lp((0,1),dµν) ≃





np(ν+1/2)−2(ν+1), if p > 2(ν+1)
ν+1/2 ,

log n, if p = 2(ν+1)
ν+1/2 ,

1, if p < 2(ν+1)
ν+1/2 ,

whenever ν > −1/2, and ‖φν
n‖p

Lp((0,1),dµν) ≃ 1 if −1 < ν ≤ −1/2.

On the other hand, ‖φν
n‖L∞((0,1),dµν) = sup{|dn,ν x−νλ

1/2
n,νJν(λn,νx)| : x ∈ (0, 1)}. By using the

asymptotics (2.3), (2.4) and (2.6), the estimate |φν
n(x)| ≤ Cnν+1/2 holds for ν > −1/2. Indeed, for

the case 0 < x ≤ n−1,

|dn,ν x−νλ1/2
n,νJν(λn,νx)| ≤ Cx−νn1/2(nx)ν ≃ nν+1/2,

and for the case n−1 < x < 1, we have that

|dn,ν x−νλ1/2
n,νJν(λn,νx)| ≤ Cx−νn1/2(nx)−1/2 ≃ x−(ν+1/2) < nν+1/2.

Note that, for −1 < ν ≤ −1/2, ‖φν
n‖L∞((0,1),dµν) is controlled by a constant (in the case 0 < x ≤ n−1,

nν+1/2 is obviously estimated by a constant, and in the case n−1 < x < 1 the estimate is immediate
for x−(ν+1/2)). �

Now we are going to recall some topics about the theory of interpolation of analytic families of
operators that will be adapted to our context. The definitions in this paper and interpolation theory
can be seen in [13].

A family of operators {T (z)} depending on a complex parameter z that varies in the strip 0 ≤
Re z ≤ 1 is said to be analytic if it has the following properties:

(a) For each z, T (z) is a linear transformation of simple functions on (0, 1) to measurable functions
on (0, 1).

(b) If f and g are simple functions on (0, 1), then the function

F (z) =
∫ 1

0

T (z)(g(x))f(x) dx

is analytic in 0 < Re z < 1 and continuous in 0 ≤ Re z ≤ 1.
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We will say that an analytic family {T (z)} is of admissible growth if F (z) is of admissible growth;
that is, if

sup
|y|≤r

sup
0≤x≤1

log |F (x + iy)| ≤ Aear

where a < π and A is a constant. Both A and a can depend on the functions f and g.
Stein Theorem of interpolation is the following

Theorem 2.2 (see [13]). Let {T (z)} be an analytic family of linear operators of admissible growth
defined in the strip 0 ≤ Re(z) ≤ 1. Suppose that 1 ≤ p0, p1, p̃0, p̃1 ≤ ∞ and

1
p

=
1− t

p0
+

t

p1
,

1
p̃

=
1− t

p̃0
+

t

p̃1
,

where 0 ≤ t ≤ 1. Finally suppose that

‖T (iy)f‖Lp̃0((0,1),dµν) ≤ A0(y)‖f‖Lp0((0,1),dµν)

and

‖T (1 + iy)f‖Lp̃1((0,1),dµν) ≤ A1(y)‖f‖Lp1((0,1),dµν)

for simple functions f verifying

log |Ai(y)| ≤ Aea|y|, a < π, i = 0, 1.

Then, we may conclude that

‖T (t)f‖Lp̃((0,1),dµν) ≤ At‖f‖Lp((0,1),dµν)

where

log At ≤
∫

R
w(1 − t, y) log A0(y) dy +

∫

R
w(t, y) log A1(y) dy

and

w(t, y) =
tan(πt/2)

2[tan2(πt/2) + tanh2(πy/2)] cos2(πy/2)
.

3. Proof of inequality (1.5)

In order to get (1.5), we are going to prove

‖L−1/2
ν sin(tL1/2

ν )g‖L2((0,1),dµν) ≤ C‖g‖Lp((0,1),dµν).

We would like to embed L
−1/2
ν sin(tL1/2

ν ) into an analytic family of operators. We define the operators
St(α), for α in the strip 0 ≤ Re(α) ≤ (2ν + 3)/2, as

(3.1) St(α) =
(π

2

)1/2

t(tL1/2
ν )α−(ν+1)J(ν+1)−α(tL1/2

ν ).

These operators form an analytic family of operators and it can be checked that this family is admis-
sible, by using (2.5). When α = 2ν+1

2 we have

St

(
2ν + 1

2

)
=
(π

2

)1/2

t(tL1/2
ν )−1/2

(
2
π

)1/2 sin(tL1/2
ν )

(tL1/2
ν )1/2

= L−1/2
ν sin(tL1/2

ν ),

so that

u1(t, x) = St

(
2ν + 1

2

)
g(x).

For St(α), we will need the following
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Proposition 3.1. Let ν > −1. Then,

(3.2)
∥∥∥∥St

(
2ν + 3

2
+ iz

)
g

∥∥∥∥
L2((0,1),dµν)

≤ Cec|z|t‖g‖L2((0,1),dµν),

and

(3.3) ‖St (−s + iz) g‖L2((0,1),dµν) ≤ Cec|z|t−s−( 2ν+1
2 )‖g‖L1((0,1),dµν),

for every s > 0.

Suppose we have proved Proposition 3.1. If we define

Tt(α) = St

(
−s +

(
2ν + 3

2
+ s

)
α

)
, s > 0,

then

Tt(iy) = St

(
−s +

(
2ν + 3

2
+ s

)
iy

)
.

Therefore, from (3.3) in Proposition 3.1 with z =
(

2ν+3
2 + s

)
y, it follows that

‖Tt(iy)g‖L2((0,1),dµν) ≤ C exp
(

c

∣∣∣∣
(

2ν + 3
2

+ s

)
y

∣∣∣∣
)

t−s−( 2ν+1
2 )‖g‖L1((0,1),dµν).

On the other hand,

Tt(1 + iy) = St

(
2ν + 3

2
+
(

2ν + 3
2

+ s

)
iy

)
,

and again, from (3.2) in Proposition 3.1 with z =
(

2ν+3
2 + s

)
y,

‖Tt(1 + iy)g‖L2((0,1),dµν) ≤ C exp
(

c

∣∣∣∣
(

2ν + 3
2

+ s

)
y

∣∣∣∣
)

t‖g‖L2((0,1),dµν).

By Theorem 2.2 we have that, for 0 < Re(α) < 1,

‖Tt(α)g‖L2((0,1),dµν) ≤ Ctαt(−s− 2ν+1
2 )(1−α)‖g‖Lp((0,1),dµν),

with p such that 1
p = 1 − α

2 . By choosing α = 2ν+1+2s
2ν+3+2s , s > 0 (we still have that 0 < Re(α) < 1) we

get

Tt

(
2ν + 1 + 2s

2ν + 3 + 2s

)
= St

(
−s +

(
2ν + 3

2
+ s

)(
2ν + 1 + 2s

2ν + 3 + 2s

))
= St

(
2ν + 1

2

)
,

and
‖Tt(α)g‖L2((0,1),dµν) ≤ C‖g‖Lps((0,1),dµν).

Hence
‖L−1/2

ν sin(tL1/2
ν )g‖L2((0,1),dµν) ≤ C‖g‖Lps((0,1),dµν),

where 1
ps

= 2ν+5+2s
2(2ν+3+2s) . If p > 2(2ν+3)

2ν+5 is given, we can always choose s > 0 such that p > ps

and L
−1/2
ν sin(tL1/2

ν ) is bounded from L2 into Lps . On the other hand, it is easy to verify that
L
−1/2
ν sin(tL1/2

ν ) is bounded from L2 to L2. Indeed,

‖L−1/2
ν sin(tL1/2

ν )g‖2L2((0,1),dµν) ≤
∞∑

n=1

(
sin(tλn,ν)

λn,ν

)2

‖Png‖2L2((0,1),dµν)

≤ C

∞∑

n=1

1
n2
‖Png‖2L2((0,1),dµν) ≤ C‖g‖2L2((0,1),dµν).

By the Riesz-Thorin interpolation Theorem, it follows that L
−1/2
ν sin(tL1/2

ν ) is bounded from Lp into
L2 for ps ≤ p ≤ 2, and therefore, for 2(2ν+3)

2ν+5 < p ≤ 2.
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Proof of Proposition 3.1. In order to prove (3.2) we first note that

St

(
2ν + 3

2
+ iz

)
=
(π

2

)1/2

t(tL1/2
ν )1/2+iz

(
2
π

)1/2

J−1/2−iz(tL1/2
ν ).

In the spectral way,
∣∣∣∣St

(
2ν + 3

2
+ iz

)
g

∣∣∣∣ ≤
(π

2

)1/2

t

∞∑

n=1

|(tλn,ν)1/2+izJ−1/2−iz(tλn,ν)Png|

≤ Ctec|z|
∞∑

n=1

|Png|,

where we have used (2.5). Hence, the operator St

(
2ν+3

2 + iz
)

is bounded on L2((0, 1), dµν) with the
required estimate.

In order to prove (3.3), we take α = −s + iz in (3.1), and then

St(−s + iz) =
(π

2

)1/2

t(tL1/2
ν )−s−(ν+1)+izJν+1+s−iz(tL1/2

ν ).

Therefore, by using (2.5) and taking into account that

‖Png‖L2((0,1),dµν) ≤ ‖φν
n‖Lq((0,1),dµν)‖g‖Lp((0,1),dµν)

we have

‖St(−s + iz)g‖2L2((0,1),dµν) =

∥∥∥∥∥
(π

2

)1/2

t
∞∑

n=1

(tλn,ν)−s−(ν+1)+izJν+1+s−iz(tλn,ν)Png

∥∥∥∥∥

2

L2((0,1),dµν)

≤ π

2
t2

∞∑

n=1

|(tλn,ν)−s−(ν+1)+izJν+1+s−iz(tλn,ν)|2‖Png‖2L2((0,1),dµν)

≤ π

2
Cec|z|t2t−2s−2(ν+1)

∞∑

n=1

n−2s−2(ν+1)−1‖Png‖2L2((0,1),dµν)

≤ Cec|z|t−2s−2ν−1
∞∑

n=1

n−2s−2ν−3‖φν
n‖2L∞((0,1),dµν)‖g‖2L1((0,1),dµν).

Now, for ν > −1/2, by using Lemma 2.1, the last sum can be estimated by
∞∑

n=1

n−2s−2ν−3n2ν+1‖g‖2L1((0,1),dµν) ≤ C‖g‖2L1((0,1),dµν),

as the series converges. Analogously, for −1 < ν ≤ −1/2, and applying Lemma 2.1 in this case, we
get the estimate

∞∑

n=1

n−2s−2ν−3‖g‖2L1((0,1),dµν) ≤ C‖g‖2L1((0,1),dµν),

as the series converges again, due to the fact that −2s− 2ν − 3 < −1, for s > 0. This completes the
proof of Proposition 3.1.

�

4. Proof of inequality (1.6)

Recall that, by (1.4), u2(t, x) = cos(tL1/2
ν )f(x). We can write

(4.1) cos(tL1/2
ν ) = cos(tL1/2

ν )L−1
ν Lν = (L−1/2

ν cos(tL1/2
ν ))L−1/2

ν δ∗νδν .

We define formally the operator R∗
ν = L

−1/2
ν δ∗ν . It will be proved in Section 5 that this operator is

bounded on Lp((0, 1), dµν). In this way, once we prove that

(4.2) ‖L−1/2
ν cos(tL1/2

ν )f‖L2((0,1),dµν) ≤ C‖f‖Lp((0,1),dµν),
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it follows from (4.1) that

‖ cos(tL1/2
ν )f‖L2((0,1),dµν) ≤ C‖(R∗

ν)δνf‖Lp((0,1),dµν) ≤ C‖δνf‖Lp((0,1),dµν).

In order to establish (4.2), first we need to express the operator in a proper way. We write

L−1/2
ν cos(tL1/2

ν ) = −2
(
sin
(
tL1/2

ν /2
))(

L−1/2
ν sin

(
tL1/2

ν /2
))

+ L−1/2
ν .

Note that sin
(
tL

1/2
ν /2

)
is a bounded operator on L2. Besides, by (1.5),

(
L
−1/2
ν sin

(
tL

1/2
ν /2

))
verifies

Lp − L2 estimates for 2(2ν+3)
2ν+5 < p ≤ 2. So it is enough to verify that L

−1/2
ν sends Lp into L2.

Lemma 4.1. Let ν ≥ −1/2 and f ∈ Lp, for 2(2ν+3)
2ν+5 < p ≤ 2. Then,

‖L−1/2
ν f‖L2((0,1),dµν) ≤ C‖f‖Lp((0,1),dµν).

Proof. Note that

‖L−1/2
ν f‖2L2((0,1),dµν) =

∥∥∥∥∥
∞∑

n=1

1
λn,ν

Pn(f)

∥∥∥∥∥

2

L2((0,1),dµν)

≤
∞∑

n=1

1
λ2

n,ν

‖Pnf‖2L2((0,1),dµν) ≤
∞∑

n=1

1
λ2

n,ν

‖φν
n‖2Lq((0,1),dµν)‖f‖2Lp((0,1),dµν).

Since 2(2ν+3)
2ν+5 < p ≤ 2, we have that 2 ≤ q < 2(2ν+3)

2ν+1 . Besides, it is easy to check that 2 < 2(ν+1)
ν+1/2 <

2ν+3
ν+1/2 . Now, for ν > −1/2, we distinguish three cases. First, when 2 < q < 2(ν+1)

ν+1/2 . In this case, by
Lemma 2.1, ‖φν

n‖Lq((0,1),dµν) ≃ C, so

∞∑

n=1

1
λ2

n,ν

‖φν
n‖2Lq((0,1),dµν)‖f‖2Lp((0,1),dµν) ≃ C

∞∑

n=1

1
n2
‖f‖2Lp((0,1),dµν) ≤ C‖f‖2Lp((0,1),dµν).

For the second case, when 2(ν+1)
ν+1/2 < q < 2ν+3

ν+1/2 , by Lemma 2.1 it is verified that ‖φν
n‖Lq((0,1),dµν) ≃

n(ν+1/2)− 2(ν+1)
q . Now
∞∑

n=1

1
λ2

n,ν

‖φν
n‖2Lq((0,1),dµν)‖f‖2Lp((0,1),dµν) ≃ C

∞∑

n=1

n2ν−1− 4(ν+1)
q ‖f‖2Lp((0,1),dµν),

and the series
∑∞

n=1 n2ν−1− 4(ν+1)
q converges in the corresponding range of q. Finally, for the case

q = 2(ν+1)
ν+1/2 , Lemma 2.1 says that ‖φν

n‖Lq((0,1),dµν) ≃ (log n)1/q. Therefore,

∞∑

n=1

1
λ2

n,ν

‖φν
n‖2Lq((0,1),dµν)‖f‖2Lp((0,1),dµν) ≃ C

∞∑

n=1

1
n2

(log n)2/q‖f‖2Lp((0,1),dµν)

= C
∞∑

n=1

(log n)
ν+1/2

ν+1

n2
‖f‖2Lp((0,1),dµν),

and the series converges. For ν = −1/2, an analogous reasoning and the estimate for the Lq-norm of
φ
−1/2
n yields the result.

Remark 4.2. Lemma 4.1 can be extended to the range −1 < ν < −1/2, for 1 < p ≤ 2, by using
Lemma 2.1 for the corresponding values of ν.

�
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5. The operator R∗
ν

We have defined formally the operator R∗
ν as

R∗
ν = L−1/2

ν δ∗ν .

We provide the definition of R∗
ν by

R∗
νf(x) =

∞∑

n=1

an(f)
λn,ν

δ∗νφν
n(x), f ∈ L2((0, 1), dµν).

First, let us prove that this operator is bounded in L2((0, 1), dµν).

Lemma 5.1. The operator R∗
ν is bounded in L2((0, 1), dµν), for ν > 0.

Proof. A computation that uses (2.1) and (2.2) shows that

δ∗φν
n(x) = λn,νdn,νλ1/2

n,νx−ν

((
1 +

1
2ν

)
Jν−1(λn,νx) +

1
2ν

Jν+1(λn,νx)
)

.

Therefore, we can write

R∗
νf(x) = Cν

∞∑

n=1

an(f)φ̂n,ν(x) + C′
ν

∞∑

n=1

an(f)φ̃n,ν(x),

where φ̂n,ν(x) = dn,νλ
1/2
n,νx−νJν−1(λn,νx) and φ̃n,ν(x) = dn,νλ

1/2
n,νx−νJν+1(λn,νx). By [2, Lemma 2.4],

the functions {φ̃n,ν}n≥1 form an orthonormal basis in L2((0, 1), dµν), and by [2, Lemma 6.1], the
functions {φ̂n,ν}n≥1 form an orthonormal basis in L2((0, 1), dµν), for ν > 0. Therefore, by Minkowski
inequality, we have the result. �

Now we prove the Lp boundedness for R∗
ν .

Proposition 5.2. Let ν > 0, 0 < x, y < 1 and 1 < p < ∞. There exists a constant C such that for
all f ∈ Lp((0, 1), dµν), the inequality

‖R∗
νf‖Lp((0,1),dµν) ≤ C‖f‖Lp((0,1),dµν)

holds, with C independent of f .

Proof. By (1.2), the operator R∗
νf can be written as

R∗
νf(x) = −

∞∑

n=1

an(f)
λn,ν

δνφν
n(x) + Cν

∞∑

n=1

an(f)
λn,νx

φν
n(x), f ∈ Lp((0, 1), dµν).

The first summand coincides with the operator −R1
νf defined in [1] that is shown to be bounded in

Lp((0, 1), dµν), see [1, Theorem 1]. Let 0 < r < 1, for the second summand it is possible to check that
∞∑

n=1

an(f)
λn,νx

φν
n(x) =

∫ 1

0

Sν(x, y)f(y) dµν(y),

where

(5.1) Sν(x, y) = lim
r→1

Sν(r, x, y)

and

Sν(r, x, y) =
∞∑

n=1

rn(λn,νx)−1φν
n(x)φν

n(y) = (xy)−νx−1
∞∑

n=1

rnd2
n,νJν(λn,νx)Jν(λn,νy).

This kernel can be identified with (xy)−νx−1P0,ν,ν(r, x, y) where P0,ν,ν(r, x, y) is the kernel that ap-
pears in [1, Section 3]. Then, by [1, Proposition 6] therein, we get

(5.2) |Sν(r, x, y)| ≤ C(xy)−νx−1





x−ν−1yν , 0 < y < x/2,

(xy)−1/2 log
(

x
|x−y|

)
, x/2 ≤ y ≤ min{1, 3x/2},

xνy−ν−1, min{1, 3x/2} ≤ y < 1.
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Finally, the existence of the limit (5.1) is a known result that can be found in [1, Proposition 7]
(see the proofs in [3, Proposition 4.2] or [2, Proposition 3.3]). Moreover, Sν(x, y) satisfies the same
inequality as Sν(r, x, y) in (5.2).

Take f ∈ Lp((0, 1), dµν). It is sufficient to verify that the quantity
∫ 1

0

∣∣∣∣
∫ 1

0

Sν(x, y)f(y)y2ν+1 dy

∣∣∣∣
p

x2ν+1 dx

is bounded by C‖f‖Lp((0,1),dµν). To check this, split the inner integration onto the intervals (0, x/2),
(x/2, min{1, 3x/2}) and (min{1, 3x/2}, 1), and consider each of the resulting integrals separately. For
the first integral, by using (5.2) and Hardy’s inequality (2.7), we show that

∫ 1

0

∣∣∣∣∣

∫ x/2

0

Sν(x, y)f(y)y2ν+1 dy

∣∣∣∣∣

p

x2ν+1 dx ≤ C

∫ 1

0

∣∣∣∣∣

∫ x/2

0

x−2ν−2f(y)y2ν+1 dy

∣∣∣∣∣

p

x2ν+1 dx

=
∫ 1

0

∣∣∣∣∣

∫ x/2

0

f(y)y2ν+1 dy

∣∣∣∣∣

p

x−p(2ν+2)+2ν+1 dx

≤ C

∫ 1

0

|f(x)|px2ν+1 dx,

and analogously for the third integral, by (5.2) and (2.8) we obtain
∫ 1

0

∣∣∣∣∣

∫ 1

min{1,3x/2}
Sν(x, y)f(y)y2ν+1 dy

∣∣∣∣∣

p

x2ν+1 dx ≤ C

∫ 1

0

|f(x)|px2ν+1 dx.

For the second integral we apply the estimate in (5.2) and the task reduces to bounding the quantity
∫ 1

0

(∫ min{1,3x/2}

x/2

|f(y)|
x

log
(

x

|x− y|

)
dy

)p

x2ν+1 dx

by C‖f‖Lp((0,1),dµν). But this integral can be treated by copying the argument of [11, p. 39].
�

6. Relationship between the wave equation for the Bessel Laplacian and other
equations

Consider the wave equation given in (1.1) with initial data f 6≡ 0 and g = 0. In this case, the
solution of the wave equation is u(t, x) = cos(tL1/2

ν )f(x). We are going to relate this solution with
the solutions of other two equations. Then, we will deduce L2 estimates for those solutions from the
results obtained for the wave equation solution, whenever the function f considered is in the Sobolev
space W 1,p((0, 1), dµν).

The heat equation. We consider the heat equation associated to the Bessel Laplacian

(6.1)

{
∂
∂tv(t, x) = −Lνv(t, x), x ∈ (0, 1), t > 0,

v(0, x) = f(x).

The relationship between the solutions of (1.1) with g = 0 and (6.1) is expressed through an abstract
formula (see for instance [7, p. 120]). For completeness, we show it and give the proof in the following
lemma.

Lemma 6.1. Let x ∈ (0, 1), t > 0, f ∈ L2((0, 1), dµν) and u(s, x) be the solution of (1.1) with g = 0.
Then,

(6.2) v(t, x) =
1√
πt

∫ ∞

0

e−
s2
4t u(s, x) ds

is the solution of the initial value problem (6.1). The identity above is understood in L2((0, 1), dµν).



THE WAVE EQUATION FOR THE BESSEL LAPLACIAN 11

Proof. Since f ∈ L2((0, 1), dµν), the solution

u(t, x) =
∞∑

n=1

cos(tλn,ν)Pnf(x)

is well defined as a sum in L2((0, 1), dµν). It is enough to prove the result for functions of the form

f =
N∑

n=1

Pnf,

then the result for functions in L2((0, 1), dµν) is obtained by a standard density argument. Observe
that the right hand side of (6.2) is well defined:

1√
πt

∫ ∞

0

∣∣e− s2
4t u(s, x)

∣∣ ds ≤ 1√
πt

N∑

n=1

|Pnf(x)|
∫ ∞

0

e−
s2
4t ds =

N∑

n=1

|Pnf(x)| < ∞,

and

v(t, x) =
1√
πt

N∑

n=1

Pnf(x)
∫ ∞

0

e−
s2
4t cos(sλn,ν) ds.

With this, by integrating by parts twice, we have

−Lνv(t, x) = − 1√
πt

N∑

n=1

λ2
n,νPnf(x)

∫ ∞

0

e−
s2
4t cos(sλn,ν) ds

=
1√
πt

∫ ∞

0

e−
s2
4t

∂2

∂s2
u(s, x) ds =

1√
πt

∫ ∞

0

∂2

∂s2
e−

s2
4t u(s, x) ds

=
1√
πt

∫ ∞

0

(
s2

4t2
− 1

2t

)
e−

s2
4t u(s, x) ds.

On the other hand,

∂

∂t
v(t, x) =

1√
π

∫ ∞

0

∂

∂t

e−
s2
4t

t1/2
u(s, x) ds =

1√
π

∫ ∞

0

(
s2

4t2
− 1

2t

)
e−

s2
4t

t1/2
u(s, x) ds.

Therefore ∂
∂tv(t, x) = −Lνv(t, x); besides, with the change of variables z = s2

4t ,

v(t, x) =
1√
πt

∫ ∞

0

e−zu(2
√

tz, x)
dz

z1/2
t1/2

=
1√
πt

∫ ∞

0

e−zu(2
√

tz, x)
dz

z1/2
t1/2,

thus v(0, x) = f(x)Γ(1/2)√
π

= f(x). �

We can state, for the solution of the heat equation, the following corollary:

Corollary 6.2. Let ν > 0 and f be such that δνf is in Lp((0, 1), dµν), 2 2ν+3
2ν+5 < p ≤ 2. Then, the

inequality
sup
t>0

‖v(t, ·)‖L2((0,1),dµν) ≤ C‖δνf‖Lp((0,1),dµν)

holds, with a constant C independent of f .

Proof. The proof of this result is easily obtained by using the previous lemma, Minkowski’s integral
inequality and (1.6) in Theorem 1.1. So,

‖v(t, ·)‖L2((0,1),dµν) ≤ C
1√
πt

∫ ∞

0

e−
s2
4t ‖u(s, ·)‖L2((0,1),dµν) ds

≤ C‖δνf‖Lp((0,1),dµν)
1√
πt

∫ ∞

0

e−
s2
4t ds = C‖δνf‖Lp((0,1),dµν),

for all t > 0. �
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The extension problem for the fractional powers of the Bessel Laplacian. Let 0 < σ < 1
and Lν be the Bessel Laplacian acting on the variable x. Let w be the solution to the extension
problem

(6.3)

{
−Lνw(x, y) + 1−2σ

y
∂
∂y w(x, y) + ∂2

∂y2 w(x, y) = 0, x ∈ (0, 1), y > 0,

w(x, 0) = f(x), on (0, 1).

The solution w of the partial differential equation (6.3) characterizes the fractional Bessel Laplacian,
namely

−y1−2σ ∂

∂y
w(x, y)

∣∣
y=0

= cσLσ
νf(x),

where cσ is a constant depending on σ. The fractional powers Lσ
ν can be defined in a spectral way,

see [15] for this result. The extension problem for −∆ instead of Lν was first introduced by Cafarelli
and Silvestre [4] and then extended to more general second order partial differential operators, see
[15]. It is known (see [15, Theorem 1.1]) that a solution of the extension problem is given by

(6.4) w(x, y) =
y2σ

4σΓ(σ)

∫ ∞

0

e−
y2
4t v(t, x)

dt

t1+σ
,

whenever f ∈ Dom(Lσ
ν ). The relationship between the solution of the extension problem (6.3) and

the solution of the wave equation (1.1) with g = 0 is shown in [6], but we state the result and give
the proof, by completeness.

Lemma 6.3. Let 0 < σ < 1, x ∈ (0, 1), y > 0 and f ∈ Dom(Lσ
ν ). Then, a solution of the extension

problem can be written as

w(x, y) =
2Γ(σ + 1/2)√

πΓ(σ)

∫ ∞

0

y2σ

(y2 + s2)σ+1/2
u(s, x) ds,

where u(s, x) is the solution of the equation (1.1) with g = 0. The identity above is understood in
L2((0, 1), dµν).

Proof. Applying (6.2) in (6.4) and with the change of variable z = y2+s2

4s , we obtain

w(x, y) =
y2σ

4σΓ(σ)

∫ ∞

0

e−
y2

4t
1√
πt

∫ ∞

0

e−
s2
4t u(s, x) ds

dt

t1+σ

=
y2σ

4σΓ(σ)
√

π

∫ ∞

0

∫ ∞

0

e−
y2+s2

4t

tσ+1/2

dt

t
u(s, x) ds

=
y2σ

4σΓ(σ)
√

π

∫ ∞

0

∫ ∞

0

e−z (4z)σ+1/2

(y2 + s2)σ+1/2

dz

z
u(s, x) ds

=
Γ(σ + 1/2)4σ+1/2

4σΓ(σ)
√

π

∫ ∞

0

y2σ

(y2 + s2)σ+1/2
u(s, x) ds.

Besides, making the change z̄ = s2

y2 one has

w(x, y) =
Γ(σ + 1/2)4σ+1/2

4σΓ(σ)
√

π

1
2

∫ ∞

0

z̄−1/2

(1 + z̄)σ+1/2
u(y

√
z̄, x) dz̄.

Therefore, w(x, 0) = f(x), since
∫ ∞

0

z̄−1/2

(1 + z̄)σ+1/2
dz̄ =

Γ(1/2)Γ(σ)
Γ(σ + 1/2)

.

�

In the end, we have the following result concerning the solution of the extension problem:
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Corollary 6.4. Let ν > 0 and f be such that δνf is in Lp((0, 1), dµν), 2 2ν+3
2ν+5 < p ≤ 2. Then,

sup
y>0

‖w(·, y)‖L2((0,1),dµν) ≤ C‖δνf‖Lp((0,1),dµν),

with a constant C independent of f .

Proof. In order to obtain the proof of this corollary, we use Lemma 6.3, Minkowski’s integral inequality
and (1.6) in Theorem 1.1. In this way,

sup
y>0

‖w(·, y)‖L2((0,1),dµν) ≤ C
2Γ(σ + 1/2)√

πΓ(σ)
sup
y>0

∫ ∞

0

y2σ

(y2 + t2)σ+1/2
‖u(t, ·)‖L2((0,1),dµν) dt

≤ C‖δνf‖Lp((0,1),dµν)
2Γ(σ + 1/2)√

πΓ(σ)
sup
y>0

∫ ∞

0

y2σ

(y2 + t2)σ+1/2
dt,

and the last integral was computed some lines above, in the proof of Lemma 6.3. From this, it follows
the desired result. �
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[2] Ó. Ciaurri and K. Stempak, Conjugacy for Fourier-Bessel expansions, Studia Math. 176 (2006), 215–247.
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Departamento de Matemáticas y Computación, Universidad de La Rioja, 26004 Logroño, Spain
E-mail address: oscar.ciaurri@unirioja.es, luz.roncal@unirioja.es


