期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:428
Polya-Radoux type results for some arithmetical functions
Article
关键词: Riemann integral;    Arithmetic functions;    Asymptotic results;    Polya theorem;    Radoux theorem;   
DOI  :  10.1016/j.jmaa.2015.03.062
来源: Elsevier
PDF
【 摘 要 】

Let h : [1, infinity) -> [0, infinity) be a function with the properties that there exists x(0) >= 1 such that h is an element of C-1 ([x(0), infinity)), h (x(0)) > 0, h' (x) > 0 for all x >= x(0) and lim(x ->infinity) h(x) = infinity. We prove that if a : N > [0, infinity) and k >= 1 then, Sigma(n <= x) a(n) similar to [h(x)](k) if and only if for every function f : [0,1] > R such that x(k-1) f(x) is Riemann integrable the following equality holds lim(x ->infinity) 1/[h(x)](k) Sigma(x0<= x) a(n) f(h(n)/h(x)) = k integral(1)(0) x(k-1) f(x) dx. Applications in the case of the prime numbers are given. (C) 2015 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2015_03_062.pdf 267KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次