JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:443 |
Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity | |
Article | |
Zhao, Xiangdong1  Zheng, Sining1  | |
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China | |
关键词: Keller-Segel system; Chemotaxis; Singular sensitivity; Boundedness; | |
DOI : 10.1016/j.jmaa.2016.05.036 | |
来源: Elsevier | |
【 摘 要 】
We consider a parabolic-parabolic Keller-Segel system of chemotaxis model with singular sensitivity: u(t) = Delta u-chi del.(u/v del v), v(t) = k Delta v - v+u under the homogeneous Neumann boundary condition in a smooth bounded domain Omega subset of R-n (n >= 2), with chi, k > 0. It is proved that for any k > 0, the problem admits global classical solutions, whenever chi is an element of (0,-k-1/2 +1/2 root(k - 1)(2) + 8k/n). The global solutions are moreover globally bounded if n <= 8. This shows a way the size of the diffusion constant k of the chemicals v affects the behavior of solutions. (c) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2016_05_036.pdf | 294KB | download |