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Global boundedness of solutions in a parabolic-parabolic

chemotaxis system with singular sensitivity∗

Xiangdong Zhao Sining Zheng†

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P. R. China

May 19, 2016

Abstract

We consider a parabolic-parabolic Keller-Segel system of chemotaxis model with sin-

gular sensitivity: ut = Δu − χ∇ · (uv∇v), vt = kΔv − v + u under the homogeneous

Neumann boundary condition in a smooth bounded domain Ω ⊂ R
n (n ≥ 2), with

χ, k > 0. It is proved that for any k > 0, the problem admits global classical solutions,

whenever χ ∈ (
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
. The global solutions are moreover globally

bounded if n ≤ 8. This shows a way the size of the diffusion constant k of the chemicals

v effects the behavior of solutions.

2010MSC: 35B40; 92C17; 35K55
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1 Introduction

In this paper, we consider the parabolic-parabolic chemotaxis system with singular sensitivity

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = Δu− χ∇ · (u
v
∇v), x ∈ Ω, t ∈ (0, T ),

vt = kΔv − v + u, x ∈ Ω, t ∈ (0, T ),

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)), x ∈ Ω,

(1.1)

where χ, k > 0, Ω is a smooth bounded domain in R
n (n ≥ 2), ∂

∂ν denotes the derivation

with respect to the outer normal of ∂Ω, and the initial data u0 ∈ C0(Ω), u0(x) ≥ 0 on Ω,

v0 ∈ W 1,q(Ω) (q > n), v0(x) > 0 on Ω.

The classical Keller-Segel system of chemotaxis model was introduced by Keller and Segel

[6] in 1970 to describe the cells (with density u) move towards the concentration gradient

∗Supported by the National Natural Science Foundation of China (11171048).
†Corresponding author. E-mail: snzheng@dlut.edu.cn (S. N. Zheng), 704456001@qq.com (X. D. Zhao)
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of a chemical substance v produced by the cells themselves. Various forms of sensitivity

functions can be chosen to model different types of chemotaxis mechanisms. Among them

φ(v) = χ
v was selected in (1.1) largely due to the Weber-Fechner’s law for cellular behaviors,

where the subjective sensation is proportional to the logarithm of the stimulus intensity [7].

With φ(v) = χ
v , the cellular movements are governed by the taxis flux χ∇v

v , which may

be unbounded when v ≈ 0. In the model (1.1), the values of the chemotactic sensitivity

coefficient χ and the chemical diffusion constant k play significant roles to determine the

behavior of solutions.

Recall the known results in the field with k = 1. At first consider the parabolic-elliptic

analogue of (1.1), where the second parabolic equation in (1.1) is replaced by the elliptic

equation 0 = Δv − v + u. It was known that all radial classical solutions are global-in-time

if either n ≥ 3 with χ < 2
n−2 , or n = 2 with χ > 0 arbitrary [9]. When 0 < φ(v) < χ

vl

with l ≥ 1, χ > 0, there is a unique and globally bounded classical solution if χ < 2
n (l = 1)

or χ < 2
n · ll

(l−1)(l−1) γ
(l−1) (l > 1), with γ > 0 depending on Ω and u0 [3]. Next consider

the parabolic-parabolic case. All solutions of (1.1) are global in time when either n = 1

[11], or n = 2 and χ < 5
2 under the radial assumption, while χ < 1 under the non-radial

assumption [1, 10]. For n ≥ 2, (1.1) possesses global classical solutions if 0 < χ <
√

2
n , and

moreover, χ <
√

n+2
3n−4 ensures the global existence of weak solutions [14]. In addition, the

global solutions are globally bounded with χ <
√

2
n [2]. Refer to [8, 12, 16] for more results

on chemotaxis models with singular sensitivities.

Recently, under somewhat complicated conditions, Wang [13] established classical global

solutions to the problem, a similar model to (1.1),
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (∇u− χu

v + c
∇v), x ∈ Ω, t ∈ (0, T ),

vt = kΔv − αv + βu, x ∈ Ω, t ∈ (0, T ),

∂u

∂ν
=

∂v

∂ν
= 0, x ∈ ∂Ω, t ∈ (0, T ),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)), x ∈ Ω,

with χ, c, k, α, β > 0. In the present paper, motivated by Winkler [14] and Fujie [2], we

will prove the global existence-boundedness of classical solutions to (1.1), with simplified

conditions. That is the following theorem.

Theorem 1 Let n ≥ 2, u0 ∈ C0(Ω), v0 ∈ W 1,q(Ω) (q > n) with u0 ≥ 0, v0 > 0 on

Ω. Then, for any k > 0, there exists a global classical solution to (1.1), provided χ ∈(
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
. Moreover, the solution is globally bounded under n ≤ 8.

Remark 1 Theorem 1 shows in what way the size of k > 0 (the diffusion strength of the

chemicals v) effects the behavior of solutions to (1.1). It is interesting to observe that when

n = 2 the global existence-boundedness of solutions is independent of the size of k > 0, since

−k−1
2 + 1

2

√
(k − 1)2 + 8k

n ≡ 1 with n = 2. Quite differently, when n ≥ 3 the contribution of
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k > 0 is significant that the range of χ for global existence-boundedness of solutions will be

enlarged (shrunk) as k > 0 is decreasing (increasing). The arbitrariness of k > 0 yields the

“maximal” range with χ ∈ (0, 1) or the “minimal” range with χ ∈ (0, 2
n). That is to say for

any χ ∈ (0, 1) (close to 1), there is k > 0 (small) such that the classical solution of (1.1) is

globally bounded. On the other hand, for any k > 0 (large), there is χ ∈ (0, 2
n) to ensure

the global boundedness. Finally, it is pointed out that if k = 1, the required range of χ in

Theorem 1 becomes 0 < χ <
√

2
n , which coincides with those in [2, 14].

Remark 2 Now compare our results for the parabolic-parabolic chemotaxis model (1.1) with

those for the corresponding parabolic-elliptic model, which can be considered as a special case

of (1.1) with the diffusion constant of the chemicals v sufficiently large [5]. Just as mentioned

in Remark 1, letting k > 0 be arbitrarily large results in the “minimal” permitted range with

0 < χ < 2
n . This does agree with those obtained for the parabolic-elliptic model in [3].

2 Preliminaries

In this section we introduce the local existence of classical solutions to (1.1) with required

estimates involving χ and k, as well as some technical lemmas for the global boundedness as

preliminaries.

Lemma 2.1 Let n ≥ 2, u0 ∈ C0(Ω), v0 ∈ W 1,q(Ω) (q > n) with u0 ≥ 0, v0 > 0 on Ω.

Then, for any k, χ > 0, there exists Tmax ∈ (0,∞], such that (1.1) has a unique nonnega-

tive solution u ∈ C0([0, Tmax);C
0(Ω)) × C2,1(Ω × (0, Tmax)) and v ∈ C0([0, Tmax);C

0(Ω)) ×
C2,1(Ω × (0, Tmax)) × L∞

loc

(
[0, T ); W 1,q(Ω)

)
, where either Tmax = ∞, or Tmax < ∞ with

limt→Tmax(‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω)) = ∞.

Proof. For k > 0, it is known from Lemma 2.2 in [2] that there is η > 0, such that

infx∈Ω v(x, t) ≥ η > 0 for all t > 0. Consequently, the local existence lemma can be ob-

tained by the classical parabolic theory, refer to [4, Theorem 3.1]. �

The following lemma is crucial to establish the global existence-boundedness conclusions

of the paper. Denote r±(p) := (p− 1)
[pχ(1−k)+2k
p(k−1)2+4k

± 2
√

k2−pχk(k−1)−pχ2k

p(k−1)2+4k

]
.

Lemma 2.2 Let (u, v) solve (1.1) with k > 0 and χ ∈ (
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
. If

‖v(·, t)‖Lp−r(Ω) ≤ c, t ∈ (0, Tmax) (2.1)

with p < k
[χ2−χ(1−k)]+

, r ∈ (r−(p), r+(p)), and c > 0, then

∫
Ω
upv−rdx ≤ c̃, t ∈ (0, Tmax) (2.2)

with some c̃ > 0.
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Proof. It is known via a simple computation with (1.1) that

d

dt

∫
Ω
upv−rdx = p

∫
Ω
up−1v−r[Δu− χ∇(

u

v
∇v)]dx− r

∫
Ω
upv−r−1(kΔv − v + u)dx

= −p

∫
Ω
∇(up−1v−r) · (∇u− χ

u

v
∇v)dx+ rk

∫
Ω
∇(upv−r−1) · ∇vdx

+ r

∫
Ω
upv−rdx− r

∫
Ω
up+1v−r−1dx

= −p(p− 1)

∫
Ω
up−2v−r|∇u|2dx+ [pr + prk + p(p− 1)χ]

∫
Ω
up−1v−r−1∇u · ∇vdx

− [r(r + 1)k + prχ]

∫
Ω
upv−r−2|∇v|2dx+ r

∫
Ω
upv−rdx− r

∫
Ω
up+1v−r−1dx

≤
∫
Ω

[p[(p− 1)χ+ r + rk]2

4(p− 1)
− prχ− r(r + 1)k

]
upv−r−2|∇v|2dx

+ r

∫
Ω
upv−rdx− r

∫
Ω
up+1v−r−1dx

by Young’s inequality. Denote

f(r; p, χ, k) :=
p[(p− 1)χ+ r + rk]2

4(p− 1)
− prχ− r(r + 1)k,

and rewrite it as the quadric expression in r

4(p− 1)f(r; p, χ, k) = [p(k − 1)2 + 4k]r2 + [2p(p− 1)χ(k − 1)− 4(p− 1)k]r + p(p− 1)2χ2.

We know

Δr : = 4(p− 1)2[pχ(k − 1)− 2k]2 − 4(p− 1)2pχ2[p(k − 1)2 + 4k]

= 16(p− 1)2[k2 − pχk(k − 1)− pχ2k] > 0

whenever p < k
[χ2+χ(k−1)]+

. Consequently, f(r; p, χ, k) < 0 for any r ∈ (
r−(p), r+(p)

)
. This

yields

d

dt

∫
Ω
upv−rdx ≤ r

∫
Ω
upv−rdx− r

∫
Ω
up+1v−r−1dx, t ∈ (0, Tmax). (2.3)

Due to
∫
Ω upv−r ≤ ( ∫

Ω up+1v−r−1
) p

p+1
( ∫

Ω vp−r
) 1

p+1 , we obtain (2.2) from (2.3) and (2.1).

�

Lemma 2.3 Let v solve the second equation of (1.1) with u ∈ L∞((0, T );Lq(Ω)), k, T > 0,

1 ≤ q ≤ p ≤ ∞ with n
2 (

1
q − 1

p) < 1. Then

‖v(·, t)‖Lp(Ω) ≤ C(1 + sup
s∈(0,t)

‖u(·, s)‖Lq(Ω)), t ∈ (0, T ) (2.4)

with some C = C(v0, k, p, q,Ω) > 0.
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Proof. Noticing v(·, t) = et(kΔ−1)v0 +
∫ t
0 e

(t−s)(kΔ−1)u(·, s)ds for t > 0, by the standard

smoothing estimates for the heat semigroup under the homogeneous Neumann boundary

conditions [15], we can obtain for q ≤ p that

‖v(·, t)‖Lp(Ω) ≤ ‖et(kΔ−1)v0‖Lp(Ω) +

∫ t

0
‖e(t−s)(kΔ−1)u(·, s)‖Lp(Ω)ds

≤ C1‖v0‖L∞(Ω) + C2 sup
s∈(0,t)

‖u(·, s)‖Lq(Ω)

∫ t

0
(1 + [k(t− s)])

−n
2
( 1
q
− 1

p
)
e−(λ1+

1
k
)[k(t−s)]ds

≤ C1‖v0‖L∞(Ω) +
C2

k
sup

s∈(0,t)
‖u(·, s)‖Lq(Ω)

∫ ∞

0
(1 + α)

−n
2
( 1
q
− 1

p
)
e−λ1αdα, t ∈ (0, T ),

where C1, C2 > 0 depend only on Ω, and λ1 is the first nonzero eigenvalue of −Δ under the

Neumann boundary condition. This proves (2.4). �

Instead of taking r = p−1
2 in [2], we deal with the more complicated r = (p−1) [pχ(1−k)+2k]

p(1−k)2+4k

to describe the effect of the chemical diffusion rate k, and denote h(p;χ, k) := pχ(1−k)+2k
p(1−k)2+4k

.

With h(p) := h(p;χ, k) for simplicity, we have the following lemma.

Lemma 2.4 Let k > 0, χ ∈ (
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
, and p ∈ (

1, k
[χ2+χ(k−1)]+

)
. Then

h(p) ∈ (0, 1).

Proof. We have h′(p) = 2k(1−k)[2χ−(1−k)]
[p(1−k)2+4k]2

.

If k = 1, then h(p) ≡ 1
2 .

If k > 1, then h′(p) < 0, and so

0 < χ
2χ+k−1 = h( k

χ2−χ(1−k)
− 0) = h( k

[χ2−χ(1−k)]+
− 0) < h(p) < h(1 + 0) = 2k+χ(1−k)

(1−k)2+4k
<

2k
(1+k)2

< 1.

Now suppose 0 < k < 1.

If 0 < χ < 1−k
2 , then h′(p) < 0, and so

0 < χ
1−k = lim

p→∞
pχ(1−k)+2k
p(1−k)2+4k

< h(p) < h(1 + 0) = 2k+χ(1−k)
(1−k)2+4k

< 1
2 ;

If χ = 1−k
2 , then h(p) ≡ 1

2 ;

If 1−k
2 < χ ≤ 1− k, then h′(p) > 0, and so

1
2 < 2k+χ(1−k)

(1+k)2
= h(1 + 0) < h(p) < lim

p→∞
pχ(1−k)+2k
p(1−k)2+4k

= χ
1−k ≤ 1;

If 1− k < χ <
−(k−1)+

√
(k−1)2+ 8k

n

2 , then h′(p) > 0, and so

0 < 1−k2

(1+k)2
< 2k+χ(1−k)

(1+k)2
= h(1 + 0) < h(p) < h( k

χ2−χ(1−k)
− 0) = χ

2χ+k−1 < 1.

The proof is complete. �

Denote c0 := infp∈(1,n
2
] h(p) and c0 := supp∈(1,n

2
] h(p) with n ≥ 3. By Lemma 2.4 and

its proof, c0, c
0 ∈ (0, 1). The following lemma with c0 and c0 will play an important role for

estimating the bound of u by the involved iteration in the next section.
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Lemma 2.5 Let k > 0, χ ∈ (
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
. Then n[(1−c0)x+c0−c0]+2c0x

(n−2x)(1−c0)
−x > 0

for all x ∈ (1, n2 ], provided n ≤ 8.

Proof. Denote

f(x) :=
n[(1− c0)x+ c0 − c0] + 2c0x

(n− 2x)(1− c0)
− x, x ∈ (1,

n

2
].

It suffices to show that g(x) := 2(1− c0)x
2 + [2c0 − n(c0 − c0]x+ n(c0 − c0) > 0 in (1, n2 ].

The case of c0 = c0 ∈ (0, 1) is trivial.

Now suppose 0 < c0 < c0 < 1. We have Δg = [2c0 − n(c0 − c0)]
2 − 8n(1− c0)(c

0 − c0) =

[n(c0−c0)]
2+(4c0−8)n(c0−c0)+4c20 < 0, and hence g(x) > 0, whenever 4−2c0−4

√
1− c0 <

n(c0 − c0) < 4− 2c0 + 4
√
1− c0.

If n(c0 − c0) ≤ 4 − 2c0 − 4
√
1− c0, then Δg > 0. Due n(c0 − c0) − 2c0 < 4(1 − c0) −

4
√
1− c0 < 0, we know that both the two roots of g(x) must be negative. With g(1+0) = 2,

we obtain g(x) > 0.

If n(c0 − c0) ≥ 4 − 2c0 + 4
√
1− c0, then Δg > 0, and the two roots of g(x) satisfy

x2 ≥ x1 > 0. Together with g(1 + 0) = 2 and g(n2 ) = n2

2 (1 − c0) + nc0 > 0, the positivity

of g(x) for x ∈ (1, n2 ] requires that the minimal point of g(x) satisfies n(c0−c0)−2c0
4(1−c0)

< 1,

i.e., n(c0 − c0) + 2c0 < 4, by Vieta’s formulas. This contradicts the case n(c0 − c0) ≥
4 − 2c0 + 4

√
1− c0. So, the case itself should be excluded to ensure g(x) > 0 in (1, n2 ].

Rewrite the case as c0 ≥ (n−2)c0+4+4
√
1−c0

n � α(c0) with c0 ∈ (0, 1). We get a contradiction

that c0 ≥ α(c0) > min{α(+0), α(1− 0)} = min{n+2
n , 8

n} ≥ 1, whenever n ≤ 8. �

3 Proof of main result

We deal with the proof of the main result of the paper in this section.

Proof of Theorem 1.

We at first show that the local solutions ensured by Lemma 2.1 should be global. For

simplicity, denote T = Tmax.

Assume p > q. By the Hölder inequality, we have

∫
Ω
uqdx =

∫
Ω
(upv−r)

q
p v

rq
p dx ≤

(∫
Ω
upv−rdx

) q
p
(∫

Ω
v

rq
p−q dx

) p−q
p
, 0 < t < T. (3.1)

Let p < k
[χ2+χ(k−1)]+

. We know from (2.3) in the proof of Lemma 2.2 with r ∈
(r−(p), r+(p)) that

d

dt

∫
Ω
upv−rdx ≤ r

∫
Ω
upv−rdx, t ∈ (0, T ),

and hence ∫
Ω
upv−rdx ≤ C, t ∈ (0, T ) (3.2)

6



with C = C(t) > 0. Notice that χ ∈ (
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
with p < k

[χ2+χ(k−1)]+
admits p > n

2 .

Take q ∈ (n2 , p) ⊂
(
1,min{p, n(p−r)

[n−2r]+
}). Then n

2 (
1
q − p−q

rq ) < 1. By Lemma 2.3, we have

with C1 > 0 that

‖v‖
L

rq
p−q (Ω)

≤ C1(1 + sup
s∈(0,t)

‖u‖Lq(Ω)), 0 < t < T. (3.3)

Combining (3.1)–(3.3) yields∫
Ω
uqdx ≤ C2

(
1 + ( sup

s∈(0,t)

∫
Ω
uqdx)

r
p

)
, t ∈ (0, T ),

and hence
∫
Ω uqdx ≤ C3 for t ∈ (0, T ), where C2 = C2(t) = C̃2e

rt with C̃2 > 0, C3 = C3(t) >

0, and r
p < p−1

p < 1 by Lemma 2.4. Thus, we can follow the proof of [14, Lemma 3.4] to

obtain the global existence of solutions for (1.1).

Next, we prove the solutions established above are also globally bounded if n ≤ 8. We

should verify that
∫
Ω uqdx < C with some q > n

2 and C > 0 [14].

The case of n = 2 is simple. In fact, take⎧⎪⎨
⎪⎩

p ∈ (
1,

k

[χ2 + χ(k − 1)]+

)
,

r = (p− 1)h(p).

Then 1 − 1
p−r < 1. By Lemma 2.3 with the L1-conservation of u, there exists C4 > 0 such

that

‖v‖Lp−r(Ω) ≤ C4, t ∈ (0, T ).

By Lemma 2.2, ∫
Ω
upv−rdx ≤ C5, t ∈ (0, T ) (3.4)

with some C5 > 0. We deduce from (3.1), (3.3) and (3.4) that there exists q > 1, such that

‖u‖Lq(Ω) ≤ C6 for t ∈ (0, T ) with C6 > 0.

Now consider the case of 3 ≤ n ≤ 8. We should prove (2.1) for some p > n
2 with the

constant independent of t there. We will do it via an iteration procedure based of Lemma

2.5.

1◦ Take ⎧⎪⎨
⎪⎩

p0 ∈
(
1,min

{ k

[χ2 + χ(k − 1)]+
,
n(1− c0) + 2c0
(n− 2)(1− c0)

})
,

r0 = (p0 − 1)h(p0).

(3.5)

Then p0 − r0 ≤ p0 − (p0 − 1)c0 = (1 − c0)p0 + c0 < n
n−2 , i.e.,

n
2 (1 − 1

p0−r0
) < 1. By Lemma

2.3 with the L1-conservation of u, we have

‖v‖Lp0−r0 (Ω) ≤ C7, t ∈ (0, T ),

7



and hence ∫
Ω
up0v−r0dx ≤ C8, t ∈ (0, T ) (3.6)

by Lemma 2.2, with some C7, C8 > 0. We know from (3.1), (3.3) and (3.6) that ‖u‖Lq0 (Ω) ≤ C9

for t ∈ (0, T ) with C9 > 0. If p0 >
n
2 , take q0 ∈ (n2 , p0) ⊂

(
1,min{p0, n(p0−r0)

[n−2r0]+
}).

2◦ Assume p0 ≤ n
2 . Take⎧⎪⎨

⎪⎩
p1 ∈

(
p0,min

{ k

[χ2 + χ(k − 1)]+
,
n[(1− c0)p0 + c0 − c0] + 2c0p0

(n− 2p0)(1− c0)

})
,

r1 = (p1 − 1)h(p1),

where the well-definedness of the interval for p1 is ensured by Lemma 2.5. A simple calculation

shows

p1 − r1 ≤ (1− c0)p1 + c0 <
n[(1− c0)p0 + c0]

n− 2p0
≤ n(p0 − r0)

n− 2p0
=

nn(p0−r0)
n−2r0

n− 2n(p0−r0)
n−2r0

,

i.e.,n2 (
1

n(p0−r0)
n−2r0

− 1
p1−r1

) < 1. By Lemma 2.3 with p0 ≤ n
2 , there is q0 ∈ (1, n(p0−r0)

n−2r0
) such that

‖v‖Lp1−r1 (Ω) < C10, t ∈ (0, T ),

and thus ∫
Ω
up1v−r1dx ≤ C11, t ∈ (0, T ) (3.7)

by Lemma 2.2, with some C10, C11 > 0. It follows from (3.1), (3.3) and (3.7) that ‖u‖Lq1 (Ω) ≤
C12 for t ∈ (0, T ) with C12 > 0. If p1 >

n
2 , take q1 ∈ (n2 , p1) ⊂

(
1,min{p1, n(p1−r1)

[n−2r1]+
}).

3◦ Assume pl−1 ≤ n
2 for some l ∈ {1, 2, 3, . . . }. Take

⎧⎪⎨
⎪⎩

pl ∈
(
pl−1,min

{ k

[χ2 + χ(k − 1)]+
,
n[(1− c0)pl−1 + c0 − c0] + 2c0pl−1

(n− 2pl−1)(1− c0)

})
,

rl = (pl−1 − 1)h(pl−1),

(3.8)

where the interval for pl is well defined due to Lemma 2.5. Repeat the procedure in 2◦, we
deduce with ql ∈

(
1,min{pl, n(pl−rl)

[n−2rl]+
}) that ‖u‖Lql (Ω) ≤ C13, 0 < t < T , with some C13 > 0.

Noticing
n[(1−c0)pl−1+c0−c0]+2c0pl−1

(n−2pl−1)(1−c0)
→ ∞ as l → ∞ by Lemma 2.5, we can realize pl > n

2

after finite steps. Let q = ql ∈ (n2 , pl) to get
∫
Ω uqdx ≤ C14 for all t ∈ (0, T ) with C14 > 0.

It is mentioned that for any fixed k > 0, the involved constants Ci, i = 4, . . . , 14, are all

independent of t ∈ (0, T ) here.

Based on the above estimate ‖u(·, t)‖Lq(Ω) with q > n
2 , uniform for t ∈ (0, T ), we conclude

the global boundedness of u by repeating the related arguments in [14] for the case of k = 1.
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Remark 3 Notice that p0 < k
[χ2+χ(k−1)]+

in (3.5) with χ ∈ (
0,−k−1

2 + 1
2

√
(k − 1)2 + 8k

n

)
admits p0 > n

2 . Moreover, a simple computation shows p0 < n(1−c0)+2c0
(n−2)(1−c0)

in (3.5) ensures
n(1−c0)+2c0
(n−2)(1−c0)

> n
2 whenever n = 3, 4. Therefore, the Steps 2◦ and 3◦ in the proof of Theorem

1 are unnecessary for n = 3, 4 there. In addition, it should be pointed out that if k = 1,

then c0 = c0 = 1
2 , and thus the requirement n ≤ 8 itself can be removed away for the global

boundedness of solutions.
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