JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | 卷:445 |
Asymptotically autonomous multivalued Cauchy problems with spatially variable exponents | |
Article | |
Kloeden, Peter E.1  Simsen, Jacson2,3  Simsen, Mariza Stefanello2,3  | |
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China | |
[2] Univ Fed Itajuba, Inst Matemat & Computacao, Av BPS 1303, BR-37500903 Itajuba, MG, Brazil | |
[3] Univ Duisburg Essen, Fak Math, Thea Leymann Str 9, D-45127 Essen, Germany | |
关键词: Multivalued Cauchy problem; Variable exponents; Pullback attractors; Time-dependent operator; Asymptotically autonomous inclusion; | |
DOI : 10.1016/j.jmaa.2016.08.004 | |
来源: Elsevier | |
【 摘 要 】
We study the asymptotic behavior of a non-autonomous multivalued Cauchy problem of the form partial derivative u/partial derivative t(t) - div(D(t)vertical bar del u(t)vertical bar(p(x)-2)del u(t)) + vertical bar u(t)vertical bar(p(x)-2)u(t) + F(t, u(t)) (sic) 0 on a bounded smooth domain Omega in R-n >= 1 with a homogeneous Neumann boundary condition, where the exponent p(.) is an element of C((Omega) over bar) satisfies p- := min p(x) > 2. We prove the existence of a pullback attractor and study the asymptotic upper semicontinuity of the elements of the pullback attractor U = {A(t) : t is an element of R} as t -> infinity for the non -autonomous evolution inclusion in a Hilbert space H under the assumptions, amongst others, that F is a measurable multifunction and D is an element of L-infinity([tau,T] x Omega) is bounded above and below and is monotonically nonincreasing in time. The global existence of solutions is obtained through results of Papageorgiou and Papalini. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jmaa_2016_08_004.pdf | 399KB | download |