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Abstract

We study the asymptotic behavior of a non-autonomous multivalued Cauchy
problem of the form

∂u

∂t
(t)− div(D(t)|∇u(t)|p(x)−2∇u(t)) + |u(t)|p(x)−2u(t) + F (t, u(t)) � 0

on a bounded smooth domain Ω in R
n, n ≥ 1 with a homogeneous Neu-

mann boundary condition, where the exponent p(·) ∈ C(Ω) satisfies p− :=
min p(x) > 2. We prove the existence of a pullback attractor and study the
asymptotic upper semicontinuity of the elements of the pullback attractor A
= {A(t) : t ∈ R} as t → ∞ for the non-autonomous evolution inclusion in a
Hilbert space H under the assumptions, amongst others, that F is a measur-
able multifunction and D ∈ L∞([τ, T ]×Ω) is bounded above and below and
is monotonically nonincreasing in time. The global existence of solutions is
obtained through results of Papageorgiou and Papalini.
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1. Introduction

In this paper we study a multivalued Cauchy problem of the form{
∂u
∂t
(t)− div(D(t)|∇u(t)|p(x)−2∇u(t)) + |u(t)|p(x)−2u(t) + F (t, u(t)) � 0

u(τ) = u0

(1)
on a bounded smooth domain Ω in R

n, n ≥ 1 with a homogeneous Neumann
boundary condition, where the exponent p(·) ∈ C(Ω) satisfies

p+ := max
x∈Ω

p(x) ≥ p− := min
x∈Ω

p(x) > 2,

and the initial condition u(τ) ∈ H := L2(Ω). The terms D and F are
assumed to satisfy:

Assumption D. D : [τ, T ] × Ω → R is a function in L∞([τ, T ] × Ω)
satisfying:
(D1) There are positive constants, β and M such that 0 < β ≤ D(t, x) ≤ M
for almost all (t, x) ∈ [τ, T ]× Ω.
(D2) D(t, x) ≥ D(s, x) for each x ∈ Ω and t ≤ s in [τ, T ].

Assumption F. F : [τ, T ]×H → Pf (H), where

Pf (H) := {A ⊂ H : A nonempty and closed},

is a multifunction satisfying:
(F1) For all x ∈ H, t 
→ F (t, x) is measurable, that is, for all y ∈ H, the
function

[τ, T ] � t 
→ d(y, F (t, x)) := inf{‖y − z‖H : z ∈ F (t, x)} ∈ R

is measurable.
(F2) There exists k ∈ L1([τ, T ],R+) such that

h(F (t, x), F (t, y)) ≤ k(t)‖x− y‖

a.e. on [τ, T ], for all x, y ∈ H. Here h denotes the Hausdorff metric on Pf (H)
given by: for A,B ∈ Pf (H),

h(A,B) := max{dist(A,B), dist(B,A)},
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where dist(A,B) := sup{d(a,B) : a ∈ A}, d(a,B) := inf{‖a − b‖H : b ∈ B}
and similarly for dist(B,A).
(F3) There exist a, c ∈ L2([τ, T ],R+) :

‖F (t, x)‖ := sup{‖z‖H : z ∈ F (t, x)} ≤ a(t) + c(t)‖x‖H ,

a.e. in [τ, T ], for all x ∈ H.

In [9] the authors proved the existence of a pullback attractor for the
following non-autonomous evolution equation

∂u

∂t
(t)− div(D(t)|∇u(t)|p(x)−2∇u(t)) + |u(t)|p(x)−2u(t) = B(t, u(t)) (2)

on a bounded smooth domain Ω in R
n, B was globally Lipschitz in its second

variable and D was assumed to satisfy Assumption D above. Moreover,
they proved upper semicontinuity of pullback attractors when the diffusion
parameters vary. A similar problem was studied in [15] for a constant expo-
nent p and stronger conditions on the diffusion coefficients D. In [10], the
authors considered B(t, u(t)) ≡ B(u) in the problem (2) and proved that it
is asymptotically autonomous.

The paper is organized as follows. In Section 2 we prove existence of so-
lution for inclusion (1) following Papageorgiou and Papalini [13]. In Section
3 we provide estimates on the solutions. In Section 4 we establish the exis-
tence of a pullback attractor. In Section 5 we prove the asymptotic upper
semicontinuity of the elements of the pullback attractor, i.e., we prove that
the inclusion (1) is, in fact, asymptotically autonomous when F does not
depend explicitily on t.

2. Existence of solution

In this section we present the operator and its properties and we establish
existence of solution for the multivalued Cauchy problem (1).

Let Ω ⊂ R
n, n ≥ 1, be a bounded smooth domain, H := L2(Ω) and

Y := W 1,p(·)(Ω) with p− > 2. Then Y ⊂ H ⊂ Y ∗ with continuous and dense
embeddings. Moreover, the inclusion Y ⊂ H is compact (see Proposition
2.1 (ii) and Proposition 2.5 (ii) in [7]). We refer the reader to [6, 7] and
references therein to see properties of the Lebesgue and Sobolev spaces with
variable exponents.
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In particular, with

Lp(·)(Ω) :=
{
u : Ω → R : u is measurable,

∫
Ω

|u(x)|p(x)dx < ∞
}

and L∞
+ (Ω) := {q ∈ L∞(Ω) : ess inf q ≥ 1}, define

ρ(u) :=

∫
Ω

|u(x)|p(x)dx, ‖u‖Lp(·)(Ω) := inf
{
λ > 0 : ρ

(u
λ

)
≤ 1

}
,

for u ∈ Lp(·)(Ω) and p ∈ L∞
+ (Ω).

Consider the operator A(t) defined in Y such that for each u ∈ Y associate
the following element of Y ∗, A(t)u : Y → R given by

A(t)u(v) :=

∫
Ω

D(t, x)|∇u(x)|p(x)−2∇u(x)·∇v(x)dx+

∫
Ω

|u(x)|p(x)−2u(x)v(x)dx.

The authors in [9] proved that:

• For each t ∈ [τ, T ] the operator A(t) : Y → Y ∗, with domain Y =
W 1,p(·)(Ω), is maximal monotone and A(t)(Y ) = Y ∗.

• The realization operator of A(t) at H = L2(Ω), i.e., AH(t)u =
−div(D(t)|∇u(t)|p(x)−2∇u(t)) + |u(t)|p(x)−2u(t), is maximal monotone
in H for each t ∈ [τ, T ].

• The operator AH(t) is the subdifferential ∂ϕt
p(·) of the convex, proper

and lower semicontinuous map ϕt
p(·) : L

2(Ω) → R ∪ {+∞} given by

ϕt
p(·)(u) =

⎧⎨
⎩

[∫
Ω

D(t, x)

p(x)
|∇u|p(x)dx+

∫
Ω

1

p(x)
|u|p(x)dx

]
; if u ∈ Y

+∞, otherwise.
(3)

As our operator is of subdifferential type, we can obtain existence of
global solution for problem (1) using results in the paper of Papageorgiou
and Papalini [13].

We recall the definition of solution and a result of existence from [13].
Consider a multivalued Cauchy problem of the form{

du

dt
(t) + ∂ϕt(u(t)) + F (t, u(t)) � 0, a.e. on [0, T ],

u(0) = ξ, ξ ∈ H.
(4)

4



in a real Hilbert space H, where, for all t ∈ [0, T ], ∂ϕt is the subdifferential
of a lower semicontinuous proper convex function ϕt from H into (−∞,∞].

Definition 1. A solution of (4) is a continuous function u : [0, T ] → H such
that u(·) is absolutely continuous on any closed subinterval of (0, T ) and with
the property

1) u(t) ∈ D(∂ϕt), a.e. on [0, T ];
2) There exists f ∈ L2([0, T ];H) such that f(t) ∈ F (t, u(t)) and

du

dt
(t) + ∂ϕt(u(t)) + f(t) � 0, a.e. on [0, T ];

3) u(0) = ξ.

Under the following assumption Papageorgiou and Papalini [13] estab-
lished the existence of solution to problem (4) in Theorem 1 below.

Assumption A. Let T > 0 be fixed.
(A.1) For each t ∈ [0, T ], ϕt : H → (−∞,∞] is proper, convex and lower
semicontinuous.
(A.2) For any positive integer r there exist a constant Kr > 0, an absolutely
continuous function gr : [0, T ] → R with g′r ∈ Lβ(0, T ) and a function of
bounded variation hr : [0, T ] → R such that if t ∈ [0, T ], w ∈ D(ϕt) with |w|
≤ r and s ∈ [t, T ], then there exists an element w̃ ∈ D(ϕs) satisfying

|w̃ − w| ≤ |gr(s)− gr(t)|(ϕt(w)) +Kr)
α,

ϕs(w̃) ≤ ϕt(w) + |hr(s)− hr(t)|(ϕt(w) +Kr),

where α is some fixed constant with 0 ≤ α ≤ 1 and

β :=

⎧⎨
⎩

2 if 0 ≤ α ≤ 1
2
,

1

1− α
if 1

2
≤ α ≤ 1.

Theorem 1. [Theorem 6 in [13]] Suppose that Assumption (A) and As-
sumption (F ) are satisfied. Then for each ξ ∈ cl(D(ϕ0)), the multivalued
problem (4) has a solution u on [0, T ] with u(0) = ξ.

Let us now return to our particular problem. We already saw that (A.1)
is satisfied. To check condition (A.2) consider a positive integer r and define
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Kr := r, gr(t) := t + r and hr(t) := r. For t ∈ [0, T ], w ∈ D(ϕt
p(·)) = Y

with ‖w‖Y ≤ r and s ∈ [t, T ], consider the element w̃ := w ∈ Y = D(ϕs
p(·)).

Taking α := 1/2, condition (A.2) is then satisfied with β = 2. In particular,
we need Assumption (D2) that D(t, x) ≥ D(s, x) for each x ∈ Ω and t ≤
s in [0, T ] here. Thus, we obtain the existence of a global solution for the
following problem.

Theorem 2. If Assumption (D) and Assumption (F ) hold, then the multi-
valued problem (1) has a solution for every u0 ∈ H.

3. Estimates on the solutions

In this section we provide estimates on the solutions in the spaces H and
Y .

Theorem 3. Let u be a solution of problem (1). Then there exist a constant
T1 and a function B1 : R → R which does not depend on the initial data,
such that

‖u(t)‖H ≤ B1(t), ∀ t ≥ T1 + τ.

Proof: As u is a solution of (1) there exists f ∈ L2([τ, T ];H) such that
f(t) ∈ F (t, u(t)) and

du

dt
(t) + A(t)u(t) + f(t) = 0, (5)

a.e. on [τ, T ]. Multiplying the equation (5) by u(t), we obtain

1

2

d

dt
‖u(t)‖2H + 〈A(t)u(t), u(t)〉+ 〈f(t), u(t)〉 = 0.

We know that if p(x) > q(x) then Lp(x)(Ω) ⊂ Lq(x)(Ω) with ‖u‖Lq(·)(Ω) ≤
2(|Ω|+ 1)‖u‖Lp(·)(Ω) for all u ∈ Lp(x)(Ω) (see [6]). Thus

‖u(t)‖H ≤ 2(|Ω|+ 1)‖u(t)‖Lp(·)(Ω) ≤ 2(|Ω|+ 1)‖u(t)‖Y .

If ‖u(t)‖Lp(·)(Ω) ≥ 1 and ‖∇u(t)‖Lp(·)(Ω) ≥ 1, then by Lemma 2.3 in [9]

〈A(t)u(t), u(t)〉 ≥ min{1, β}
2(p−−1)

‖u(t)‖p−Y ,
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and then

1

2

d

dt
‖u(t)‖2H ≤ −min{1, β}

2(p−−1)
‖u(t)‖p−Y − 〈f(t), u(t)〉.

Using the Cauchy-Schwarz inequality and (F3), we obtain

1

2

d

dt
‖u(t)‖2H ≤ −min{1, β}

2(p−−1)
‖u(t)‖p−Y + ‖f(t)‖H‖u(t)‖H

≤ −min{1, β}
2(p−−1)

‖u(t)‖p−Y + (a(t) + c(t)‖u(t)‖H) ‖u(t)‖H (6)

≤ −min{1, β}
2(p−−1)

‖u(t)‖p−Y + C1(t)‖u(t)‖2Y + C2(t)‖u(t)‖Y

where C1(t) := [2(|Ω|+ 1)]2c(t) and C2(t) := 2(|Ω|+ 1)a(t).

If θ := 1
2
p−, θ′ := θ

θ−1
and ε > 0, it follows from Young’s inequality

C1(t)‖u(t)‖2Y + C2(t)‖u(t)‖Y =
C1(t)ε

ε
‖u(t)‖2Y +

C2(t)ε

ε
‖u(t)‖Y

≤ 1

θ′

(
C1(t)

ε

)θ′

+
1

θ
εθ‖u(t)‖p−Y

+
1

(p−)′

(
C2(t)

ε

)(p−)′

+
1

p−
εp

−‖u(t)‖p−Y .

(7)

Choose ε0 > 0 such that

γ :=
min{1, β}
2(p−−1)

− 1

θ
εθ0 −

1

p−
εp

−
0 > 0,

we have from (6) and (7),

1

2

d

dt
‖u(t)‖2H + γ‖u(t)‖p−Y ≤ 1

θ′

(
C1(t)

ε0

)θ′

+
1

(p−)′

(
C2(t)

ε0

)(p−)′

.

Let δ(t) := 2
θ′

(
C1(t)
ε0

)θ′

+ 2
(p−)′

(
C2(t)
ε0

)(p−)′

, γ̃ := 2γ

[4(|Ω|+1)2]p−
and y(t) :=

‖u(t)‖2H . Then

y′(t) + γ̃y(t)p
−/2 ≤ δ(t), ∀ t ≥ τ.
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From a slight generalization of Lemma 5.1 in [16], we obtain

y(t) ≤
(
δ(t)

γ̃

)2/p−

+

(
γ̃

(
p− − 2

2

)
(t− τ)

)− 2
p−−2

.

Let τ1 > 0 be such that
[
γ̃
(

p−−2
2

)
τ1

]− 2
p−−2 ≤ 1. Then

‖u(t)‖H ≤
(
δ(t)

γ̃

)1/p−

+ 1 =: K1(t),

for all t ≥ τ1+τ. Observe that K1(t) depends on a(t) and c(t) of Assumption
(F3).

Similarly for each of the cases: ‖u(t)‖Lp(·)(Ω) ≥ 1 and ‖∇u(t)‖Lp(·)(Ω) ≤ 1;
‖u(t)‖Lp(·)(Ω) ≤ 1 and ‖∇u(t)‖Lp(·)(Ω) ≥ 1; ‖u(t)‖Lp(·)(Ω) ≤ 1 and ‖∇u(t)‖Lp(·)(Ω)

≤ 1, we obtain (K2(t), τ2), (K3(t), τ3) and (K4(t), τ4) such that

‖u(t)‖H ≤ Ki(t), ∀ t ≥ τi + τ,

for i = 2, 3, 4, respectively. Taking B1(t) := max{K1(t), K2(t), K3(t), K4(t)}
and T1 := max{τ1, τ2, τ3, τ4} we obtain

‖u(t)‖H ≤ B1(t), ∀ t ≥ T1 + τ,

where B1(t) depends on a(t) and c(t) of Assumption (F3). This completes
the proof of the theorem. �

Remark 1. Note that the function B1 depends on the functions a and c of
condition (F3) in the sense that if a and c are nondecreasing functions then
B1(t) in Theorem 3 is a nondecreasing function.

Theorem 4. Let u be a solution of problem (1). Then there exist a constant
T2 and a function B2 : R → R, which does not depend on the initial data,
such that

‖u(t)‖Y ≤ B2(t), ∀ t ≥ T2 + τ.

Proof: If u is a solution of (1) then, there exists f ∈ L2([τ, T ];H) such that
f(t) ∈ F (t, u(t)) and

du

dt
(t) + A(t)u(t) + f(t) = 0,
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a.e. on [τ, T ]. Furthermore, by Theorem 3

‖u(t)‖H ≤ B1(t), ∀ t ≥ T1 + τ.

Using the notation ϕt
p(·)(·) := ϕp(·)(t, ·) and y(t) := ϕt

p(·)(u(t)) we have

d

dt
y(t) =

∂

∂t
ϕp(·)(t, u(t)) + 〈∂ϕt

p(·)(u(t)),
d

dt
u(t)〉.

Differentiating under the integral sign in (3) and using assumption (D2),
we obtain ∂

∂t
ϕp(·)(t, u(t)) ≤ 0. Therefore

d

dt
ϕt
p(·)(u(t)) ≤

〈
∂ϕt

p(·)(u(t)),
du

dt
(t)

〉
.

Then

d

dt
ϕt
p(·)(u(t)) ≤

〈
− f(t)− du

dt
(t),

du

dt
(t)

〉

= −
∥∥∥∥f(t) + du

dt
(t)

∥∥∥∥
2

H

+

〈
f(t) +

du

dt
(t), f(t)

〉

≤ −1

2

∥∥∥∥f(t) + du

dt
(t)

∥∥∥∥
2

H

+
1

2
‖f(t)‖2H .

Thus
d

dt
ϕt
p(·)(u(t)) +

1

2

∥∥∥∥f(t) + du

dt
(t)

∥∥∥∥
2

H

≤ 1

2
‖f(t)‖2H ,

and we obtain

d

dt
ϕt
p(·)(u(t)) ≤ 1

2
‖f(t)‖2H ≤ 1

2
(a(t) + c(t)‖u(t)‖H)2

≤ 1

2
(a(t) + c(t)B1(t))

2 =
1

2
M1(t)

2

for all t ≥ T1 + τ, where M1(t) := a(t) + c(t)B1(t).
From the definition of subdifferential, we have

ϕt
p(·)(u(t)) ≤

〈
∂ϕt

p(·)(u(t)), u(t)
〉
.
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Thus,

1

2

d

dt
‖u(t)‖2H + ϕt

p(·)(u(t)) ≤
〈
du

dt
(t), u(t)

〉
+

〈
∂ϕt

p(·)(u(t)), u(t)
〉

= 〈−f(t), u(t)〉 ≤ ‖f(t)‖H‖u(t)‖H (8)

≤ M1(t)B1(t), ∀ t ≥ T1 + τ.

Fixing r > 0 and integrating both sides of (8) over (t, t+ r) for t ≥ T1 + τ ,∫ t+r

t

ϕs
p(·)(u(s))ds ≤ 1

2
‖u(t)‖2H +

∫ t+r

t

M1(s)B1(s)ds

≤ 1

2
B1(t)

2 +

∫ t+r

t

M1(s)B1(s)ds =: a3(t).

Let y(s) := ϕs
p(·)(u(s)), g := 0 and h(s) := 1

2
M1(s)

2. Then

∫ t+r

t

g(s)ds = 0 =: a1(t),

∫ t+r

t

h(s)ds =: a2(t),

∫ t+r

t

y(s)ds ≤ a3(t),

so, by a slight generalization of the Uniform Gronwall Lemma [16], we obtain

y(t+ r) ≤
(
a3(t)

r
+ a2(t)

)
e0 =: r̃1(t), ∀ t ≥ T1 + τ.

Therefore,∫
Ω

D(�, x)

p(x)

∣∣∣∇u(�, x)
∣∣∣p(x)dx+

∫
Ω

1

p(x)

∣∣∣u(�, x)∣∣∣p(x)dx ≤ r̃1(�),

for all � ≥ T1 + τ + r. Then

min{1, β}
p+

[ρ (∇u(�)) + ρ (u(�))] ≤ r̃1(�)

for all � ≥ T1 + τ + r, and hence,

ρ (∇u(�)) + ρ (u(�)) ≤ p+

min{1, β} r̃1(�) (9)

for all � ≥ T1 + τ + r.
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If � ≥ T1 + τ + r and ‖u(�)‖Y ≥ 1 there are four cases to analyze:

Case 1: If ‖∇u(�)‖Lp(·)(Ω) ≥ 1 and ‖u(�)‖Lp(·)(Ω) ≥ 1 we know that

‖∇u(�)‖p−
Lp(·)(Ω)

≤ ρ(∇u(�)) ≤ ‖∇u(�)‖p+
Lp(·)(Ω)

,

and
‖u(�)‖p−

Lp(·)(Ω)
≤ ρ(u(�)) ≤ ‖u(�)‖p+

Lp(·)(Ω)
.

Using (9) gives
‖u(t)‖Y ≤ R1(t), t ≥ T2 + τ,

where R1(t) := 2
[

p+

min{1,β} r̃1(t)
]1/p−

and T2 := T1 + r.

Case 2: If ‖∇u(�)‖Lp(·)(Ω) ≥ 1 and ‖u(�)‖Lp(·)(Ω) ≤ 1 we know that

‖∇u(�)‖p−
Lp(·)(Ω)

≤ ρ(∇u(�)) ≤ ‖∇u(�)‖p+
Lp(·)(Ω)

,

and
‖u(�)‖p+

Lp(·)(Ω)
≤ ρ(u(�)) ≤ ‖u(�)‖p−

Lp(·)(Ω)
.

Using (9) we obtain

‖u(t)‖Y ≤ R2(t), t ≥ T2 + τ,

where R2(t) :=
[

p+

min{1,β} r̃1(t)
]1/p−

+
[

p+

min{1,β} r̃1(t)
]1/p+

.

Case 3: If ‖∇u(�)‖Lp(·)(Ω) ≤ 1 and ‖u(�)‖Lp(·)(Ω) ≥ 1 we know that

‖∇u(�)‖p+
Lp(·)(Ω)

≤ ρ(∇u(�)) ≤ ‖∇u(�)‖p−s
Lp(·)(Ω)

,

and
‖u(�)‖p−

Lp(·)(Ω)
≤ ρ(u(�)) ≤ ‖u(�)‖p+

Lp(·)(Ω)
.

By (9) it follows that

‖u(t)‖Y ≤ R3(t), t ≥ T2 + τ,

where R3(t) := R2(t).
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Case 4: If ‖∇u(�)‖Lp(·)(Ω) ≤ 1 and ‖u(�)‖Lp(·)(Ω) ≤ 1 then we know that

‖∇u(�)‖p+
Lp(·)(Ω)

≤ ρ(∇u(�)) ≤ ‖∇u(�)‖p−
Lp(·)(Ω)

,

and
‖u(�)‖p+

Lp(·)(Ω)
≤ ρ(u(�)) ≤ ‖u(�)‖p−

Lp(·)(Ω)
.

Using (9) then gives

‖u(t)‖Y ≤ R4(t), t ≥ T2 + τ,

where R4(t) := 2
[

p+

min{1,β} r̃1(t)
]1/p+

.

In summary, defining

B2(t) := max

{
1, 2

[(
p+

min{1, β} r̃1(t)
)1/p−

+

(
p+

min{1, β} r̃1(t)
)1/p+

]}

we have ‖u(t)‖Y ≤ B2(t) for all t ≥ T2 + τ. �

Remark 2. Note that the function B2 depends on the functions a and c of
condition (F3) in the sense that if a and c are nondecreasing functions then
B2(t) in Theorem 4 is a nondecreasing function.

4. Existence of a pullback attractor

We start this subsection with some definitions, see e.g., [2, 3, 12].

Definition 2. Let X be a complete metric space, P (X) the set of all nonemp-
ty subsets of X and Rd := {(t, s) ∈ R

2 : t ≥ s}. The map U : Rd×X → P (X)
is called a multivalued evolution process on X if
(1) U(t, t, ·) = 1 is the identity map;
(2) U(t, s, x) ⊂ U(t, τ, U(τ, s, x)), for all x ∈ X, s ≤ τ ≤ t, where

U(t, τ, U(τ, s, x)) =
⋃

y∈U(τ,s,x)

U(t, τ, y).

The multivalued evolution process U is called strict if

U(t, s, x) = U(t, τ, U(τ, s, x)), for all x ∈ X, s ≤ τ ≤ t.

12



Definition 3. Let U be a multivalued evolution process on X and t ∈ R.
The set D(t) ⊂ X attracts (pullback) the nonempty bounded subset B of X
at time t if

lim
τ→−∞

dist (U(t, τ)B,D(t)) = 0. (10)

The set D(t) is said to be (pullback) attracting at time t if (10) is satisfied
for any nonempty bounded subset B ⊂ X.

For a nonempty and bounded subset B ⊂ X and t ∈ R, put γs(t, B) =⋃
τ≤s U(t, τ, B) and ω(t, B) =

⋂
γs(t, B). The set ω(t, B) is called the pull-

back ω-limit set of B at time t with respect to the multivalued evolution
process U .

Theorem 5. [Theorem 6 in [3]] Suppose that for t ∈ R and B a nonempty
and bounded subset of X there exists a nonempty compact subset D(t, B) of
X such that

lim
s→−∞

dist (U(t, s)B,D(t, B)) = 0.

Then ω(t, B) is nonempty, compact and the minimal closed set attracting B
at time t.

Definition 4. A family of sets {A(t) : t ∈ R} of X is called a pullback
attractor for the multivalued evolution process U if
(1) A(t) is pullback attracting at time t for all t ∈ R;
(2) it is semi-invariant (or negatively invariant), that is,

A(t) ⊂ U(t, s, A(s)), for any (t, s) ∈ Rd;

(3) it is minimal, that is, for any closed attracting set Y at time t, we have
A(t) ⊂ Y.

Theorem 6. [Theorem 18 in [3]] Let us suppose that for all (t, s) ∈ Rd the
map x 
→ U(t, s, x) ∈ P (X) is closed. If, moreover, for any t ∈ R there exists
a nonempty compact set D(t) which is attracting, then the set A = {A(t)}t∈R,
with

A(t) =
⋃

B∈B(X)

ω(t, B)

where B(X) = {B ∈ P (X) : B is bounded}, is the pullback attractor of U .
Moreover, the sets A(t) are compact.
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The multivalued evolution process associated with problem (1) is the map
U : Rd ×H → P (H) define by

U(t, τ, ξ) = {z : there exists u(·) ∈ Dτ (ξ) such that u(t) = z}

where Dτ (ξ) denotes the set of all solutions of problem (1) corresponding to
the initial condition u(τ) = ξ.

Theorem 7. Let t ∈ R and let B be a nonempty and bounded subset of
H. Then the ω-limit set ω(t, B) corresponding to the multivalued evolution
process associated with problem (1) is nonempty, compact and the minimal
closed set attracting B at time t.

Proof: Note that Theorem 4 shows that the family K(t) = BY (0, B2(t))
H

of compact sets of H pullback attracts bounded sets of H at time t. Hence,
by Theorem 5, ω(t, B) is nonempty, compact and the minimal closed set
attracting B at time t. �

Lemma 1. Let ξ ∈ H fixed. If gn → g weakly in L2([τ, T ];H), then the
solution un of the problem{

∂un

∂t
(t) + AH(t)un(t) + gn(t) = 0 a.e. on [τ, T ],

un(τ) = ξ.

converges in C([τ, T ];H) to the solution u of the problem{
∂u
∂t
(t) + AH(t)u(t) + g(t) = 0 a.e. on [τ, T ],

u(τ) = ξ.

Proof: If ξ ∈ Y = W 1,p(·)(Ω) = D(ϕτ
p(·)) the result follows from [8, 13].

If ξ ∈ H \ Y , given n ∈ N there exists ξn ∈ Y with ‖ξn − ξ‖ < 1
n
. Let

vn,j(·) and vj(·) be respectively the unique solution to{
∂vn,j

∂t
(t) + AH(t)vn,j(t) + gn(t) = 0 a.e. on [τ, T ],

vn,j(τ) = ξj,

and {
∂vj
∂t
(t) + AH(t)vj(t) + g(t) = 0 a.e. on [τ, T ],

vj(τ) = ξj.

14



Since ξj ∈ Y we have from [8, 13] that vn,j → vj in C([τ, T ];H) as n → ∞.
Moreover,

‖vj(t)− u(t)‖H ≤ ‖ξj − ξ‖H <
1

j
, ∀ t ∈ [τ, T ],

and vj → u in C([τ, T ];H) as j → ∞. Hence, the subsequence vn,n → u in
C([τ, T ];H) as n → ∞.

Since

‖un(t)− u(t)‖H ≤ ‖un(t)− vn,n(t)‖H + ‖vn,n(t)− u(t)‖H
≤ ‖ξn − ξ‖H + ‖vn,n(t)− u(t)‖H ,

we conclude that un → u in C([τ, T ];H) as n → ∞. �

Theorem 8. The multivalued evolution process associated with problem (1)
has a pullback attractor A = {A(t) : t ∈ R}. Moreover, the sets A(t) are
compact.

Proof: By Theorem 4 we have that the family K(t) = BY (0, B2(t))
H

of
compact sets of H is attracting. Therefore, in order to conclude the existence
of the pullback attractor using Theorem 6 we need to prove that for all
(T, τ) ∈ Rd the map H � ξ 
→ U(T, τ, ξ) ∈ P (H) is closed. Then, for fixed
(T, τ) ∈ Rd let yn ∈ U(T, τ, ξn) be such that

ξn → ξ in H,

yn → y in H.

We have to prove that y ∈ U(T, τ, ξ).
There exists a sequence un(·) ∈ Dτ (ξn) such that un(T ) = yn. As un(·) ∈

Dτ (ξn) also there exists a sequence fn ∈ L2([τ, T ];H) such that fn(t) ∈
F (t, un(t)) a.e. on [τ, T ] and{

∂un

∂t
(t) + AH(t)un(t) + fn(t) = 0 a.e. on [τ, T ],

un(τ) = ξn.
(11)

In view of (F3), we have

‖fn(t)‖H ≤ a(t) + c(t)‖un(t)‖H a.e. on [τ, T ]. (12)
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Let z(·) be the unique solution to{
∂z
∂t
(t) + AH(t)z(t) = 0 a.e. on [τ, T ],

z(τ) = ξ.
(13)

As a particular case of Theorem 3.1 in [9] we have that ‖z(t)‖H ≤ r0 where
the constant r0 does not depend on t, since that we are in the case B ≡ 0.

Subtracting the first equation on (11) from the first equation on (13) and
multiplying by un(t)− z(t) we obtain

1

2
‖un(t)− z(t)‖2H ≤ −〈fn(t), un(t)− z(t)〉 ≤ ‖fn(t)‖H‖un(t)− z(t)‖H

a.e. on [τ, T ]. Integrating the above inequality from τ to t ≤ T we obtain

1

2
‖un(t)− z(t)‖2H ≤ 1

2
‖ξn − ξ‖2H +

∫ t

τ

‖fn(s)‖H‖un(s)− z(s)‖Hds.

It follows by the Gronwall inequality that

‖un(t)− z(t)‖H ≤ ‖ξn − ξ‖H +

∫ t

τ

‖fn(s)‖Hds, ∀ t ∈ [τ, T ],

and then by (12),

‖un(t)‖H ≤ ‖z(t)‖H + ‖ξn − ξ‖H +

∫ t

τ

(a(s) + c(s)‖un(s)‖H) ds

≤ r0 + r1 +

∫ T

τ

a(s)ds+

∫ t

τ

c(s)‖un(s)‖Hds

where r1 is a constant such that ‖ξn − ξ‖H ≤ r1 for all n ∈ N. So

‖un(t)‖H ≤ K(τ, T, a) +

∫ t

τ

c(s)‖un(s)‖Hds, ∀ t ∈ [τ, T ],

where K(τ, T, a) = r0 + r1 +
∫ T

τ
a(s)ds. Hence, by the Gronwall-Bellman

inequality we obtain

‖un(t)‖H ≤ K(τ, T, a)e
∫ t
τ c(s)ds = r(t), ∀ t ∈ [τ, T ].

Therefore again using (12), we obtain

‖fn(t)‖H ≤ a(t) + c(t)r(t) = m(t) a.e. on [τ, T ].
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Hence, {fn} is a bounded sequence on the reflexive Banach space L2([τ, T ];H),
and we obtain that there exists a subsequence such that

fn → f weakly in L2([τ, T ];H).

Let vn(·) be the unique solution to{
∂vn
∂t

(t) + AH(t)vn(t) + fn(t) = 0 a.e. on [τ, T ],
vn(τ) = ξ.

(14)

By Lemma 1 we have that vn converges in C([τ, T ];H) to the solution v of{
∂v
∂t
(t) + AH(t)v(t) + f(t) = 0 a.e. on [τ, T ],

v(τ) = ξ.

Now, using (11) and (14) we have

‖un(t)− vn(t)‖H ≤ ‖ξn − ξ‖H , ∀ t ∈ [τ, T ].

So we conclude that un → v in C([τ, T ];H) and y = v(T ).
Now, to conclude the proof, it follows by Theorem 3.3 in [5] that f(t) ∈

F (t, v(t)) a.e. on [τ, T ]. �

5. Asymptotic upper semicontinuity

In this section we assume that F does not depend explicitly in t, i.e., we
consider F (t, u) ≡ F (u) and F : H → Pf (H) is a multifunction such that
there exists a constant K > 0 such that h(F (x), F (y)) ≤ K‖x − y‖ for all
x, y ∈ H.

We will prove the asymptotic upper semicontinuity of the elements of the
pullback attractor, i.e., we prove that in fact the inclusion (1) is asymptoti-
cally autonomous.

5.1. Theoretical results

In this subsection motivated by problem (1), we study the asymptotic
behaviour of an abstract non-autonomous multivalued problem in a Hilbert
space H of the form

∂u

∂t
(t) + A(t)u(t) + F (u(t)) � 0, u(τ) = ψτ , (15)
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compared with that of an autonomous multivalued problem of the form

∂v

∂t
(t) + A∞v(t) + F (v(t)) � 0, v(0) = ψ0, (16)

where A(t), A∞ are univalued operators in H and F : H → P (H) is a
multivalued map.

The autonomous problem (16) is thus the asymptotic autonomous ver-
sion of the non-autonomous problem (15). In particular, we establish the
convergence in the Hausdorff semi-distance of the component subsets of the
pullback attractor of the non-autonomous problem (15) to the global au-
tonomous attractor of the autonomous problem (16).

Some definitions on multivalued semigroups are recalled here, see for ex-
ample [4, 11, 14] for more details.

Definition 5. Let X be a complete metric space. The map G : R+ × X →
P (X) is called a multivalued semigroup (or m-semiflow) if
(1) G(0, ·) = 1 is the identity map;
(2) G(t1 + t2, x) ⊂ G(t1, G(t2, x)), for all x ∈ X and t1, t2 ∈ R

+.

Definition 6. Let G be a multivalued semigroup on X. The set A ⊂ X
attracts the subset B of X if limt→∞ dist (G(t, B), A) = 0. The set M is said
to be a global B-attractor for G if M attracts any nonempty bounded subset
B ⊂ X and it is negatively invariant, i.e., M ⊂ G(t,M), ∀t ≥ 0.

Suppose that the multivalued evolution process {U(t, τ) : t ≥ τ} in H
associated with problem (15) has a pullback attractor A = {A(t) : t ∈ R},
with A(t) compact for each t ∈ R, and that the multivalued semigroup
G : R+ × H → P (H) associated with problem (16) has a compact global
autonomous B-attractor A∞ in the Hilbert space H. The following result
will be used later to establish the convergence in the Hausdorff semi-distance
of the component subsets A(t) of the pullback attractor A to A∞ as t → ∞.

Theorem 9. Suppose that C := ∪τ∈RA(τ) is a compact subset of H. In addi-
tion, suppose that for each solution u of problem (15) there exists a solution
v of problem (16) such that u(t+ τ) → v(t) in H as τ → +∞ uniformly in
t ≥ 0 whenever ψτ ∈A(τ) and ψτ → ψ0 in H as τ → +∞. Then

lim
t→+∞

dist(A(t),A∞) = 0.
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Proof: Suppose that this is not true. Then there would exists an ε0 > 0
and a real sequence {τn}n∈N with τn > n for n ∈ N such that dist(A(τn),A∞)
≥ 3ε0 for all n ∈ N. Since the sets A(τn) are compact, there exist an ∈ A(τn)
such that

dist(an,A∞) = dist(A(τn),A∞) ≥ 3ε0, (17)

for each n ∈ N. By attraction for the multivalued semigroup we have
dist(G(�, C),A∞) ≤ ε0 for � > 0 large enough. Moreover, by the semi-

invariance of the pullback attractor there exist bn ∈ A
(
1

2
τn

)
⊂ C for n

∈ N such that an ∈ U

(
τn,

1

2
τn

)
bn for each n ∈ N. Since C is compact, there

is a convergent subsequence bn′ → b ∈ C. Since an′ ∈ U

(
τn′ ,

1

2
τn′

)
bn′ there

exists a solution un′ of

∂un′

∂t
(t) + A(t)un′(t) + F (un′(t)) � 0, un′

(
1

2
τn′

)
= bn′ ,

such that an′ = un′(τn′). From the hypotheses, there exists a solution vn′ of

∂vn′

∂t
(t) + A∞vn′(t) + F (vn′(t)) � 0, vn′(0) = b,

such that ∥∥∥∥un′(τn′)− vn′

(
1

2
τn′

)∥∥∥∥
H

< ε0

for n′ large enough (since
1

2
τn′ >

1

2
n′ is large enough). Hence,

dist (an′ ,A∞) = dist (un′(τn′),A∞)

≤
∥∥∥∥un′(τn′)− vn′

(
1

2
τn′

)∥∥∥∥
H

+ dist

(
vn′

(
1

2
τn′

)
,A∞

)

≤
∥∥∥∥un′(τn′)− vn′

(
1

2
τn′

)∥∥∥∥
H

+ dist

(
G

(
1

2
τn′ , C

)
,A∞

)
≤ 2ε0,

which contradicts (17). �
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5.2. Application to inclusion (1)

The result in Subsection 5.1 is applied here to the nonlinear inclusion
with spatially variable exponents (1) in the Hilbert space H := L2(Ω).

We assume in this subsection that F has compact values, i.e., F (u) is a
compact set for each u ∈ H and the coefficient D satisfies Assumption D and
the additional Assumption D3 that follows:

Assumption D3. D(t+ τ, ·) → D∗(·) in L∞(Ω) as τ → +∞ uniformly in
t ≥ 0.

Assumptions (D1)-(D2) imply that the pointwise limit D∗(x) as t → ∞
exists and satisfies 0 < β ≤ D∗(x) ≤ M for almost all x ∈ Ω. Then the
problem (1) with D∗(x) is autonomous and has a global autonomous B-
attractor as a particular case of the results in Section 4.

It will be shown that the dynamics of the original non-autonomous prob-
lem is asymptotically autonomous and its pullback attractor converges upper-
semi continuously to the autonomous global B-attractor A∞ of the problem{

∂v
∂t
(t)− div

(
D∗|∇v(t)|p(x)−2∇v(t)

)
+ |v(t)|p(x)−2v(t) + F (v(t)) � 0,

v(0) = ψ0.
(18)

In particular, we consider the operators

A(t)u := −div
(
D(t)|∇u|p(x)−2∇u

)
+ |u|p(x)−2u,

A∞v := −div
(
D∗|∇v|p(x)−2∇v

)
+ |v|p(x)−2v.

Applying Theorem 3 for the particular case F (t, u) ≡ F (u), there exist
positive constants T1, B1 such that ‖u(t)‖H ≤ B1 for all t ≥ T1+τ. Moreover,
applying Theorem 4 for the particular case F (t, u) ≡ F (u) and space Y =
W 1,p(x)(Ω), there exist positive constants T2, B2 such that

‖u(t)‖Y ≤ B2, ∀ t ≥ T2 + τ. (19)

Since, also ‖v(t)‖Y ≤ B2 for all t ≥ T2 + τ and Y ⊂ H with compact
embedding, it follows that

Corollary 1. ∪τ∈RA(τ) is a compact subset of H.
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Using estimate (19), the proof of the next result follows the same lines as
the proof of Theorem 4.2 of [10], and therefore is omitted here.

Lemma 2. If {ψτ : τ ∈ R} is a bounded set in Y and ψτ → ψ0 in H as
τ → +∞, then for each τ ∈ R there exists a function gτ : [0,+∞) → [0,+∞)
given by gτ (t) = K‖D(t+ τ, ·)−D∗(·)‖L∞(Ω), where K is a positive constant,
such that

〈A(t+ τ)u(t+ τ)−A∞v(t), u(t+ τ)− v(t)〉 ≥ −gτ (t), for all t ∈ R
+, τ ∈ R,

for any solution u of (15) and any uniformly bounded function v with v(t) ∈
D (A∞) for all t ≥ 0.

Observe that by Assumption D3 the function gτ : [0,+∞) → [0,+∞)
given in Lemma 2 satisfies gτ (t) → 0 as τ → +∞ uniformly in t ≥ 0.

In the next result we check the hypothesis of asymptotic continuity of the
non-autonomous flow in the Theorem 9 for problems like (15).

Theorem 10. If ψτ ∈ A(τ) and ψτ → ψ0 in H as τ → +∞, then for each
solution u of (15) there exists a solution v of (18) such that u(t+ τ) → v(t)
in H as τ → +∞ uniformly in t ≥ 0.

Proof: Let u be a solution of (15) then there exists f ∈ L2([τ, T ];H) such
that f(t) ∈ F (u(t)) a.e. and{

∂u
∂t
(t) + A(t)u(t) + f(t) = 0, a.e in [τ, T ],

u(τ) = ψτ .
(20)

Using the semi-invariance of the pullback attractor and the estimate (19) it
follows that {ψτ : τ ∈ R} is a bounded set in Y . From the semi-invariance
of the pullback attractor, A(τ) ⊂ U(τ, s)A(s), ∀ (τ, s) ∈ Rd. So, there
exists a solution w of (15) with ψτ = w(τ) and w(s) ∈ A(s). Consider the
concatenate solution

θs(�) :=

{
u(�), � ≥ τ,
w(�), s ≤ � ≤ τ.

Using the pullback attracting property, we have that for each given ε > 0
thre exists sε ∈ R such that

dist
(
U(t+ τ, sε)∪τ∈RA(τ),A(t+ τ)

)
< ε.
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In particular,

u(t+ τ) = θsε(t+ τ) ∈ Oε (A(t+ τ)) ⊂ Oε (∪τ∈RA(τ)) , ∀ ε > 0.

Then,

u(t+ τ) ∈
⋂
ε>0

Oε (∪τ∈RA(τ)) = ∪τ∈RA(τ).

Considering zτ (t) := f(t+ τ), we have

zτ (t) ∈ F (u(t+ τ)) ⊂ K := F
(
∪τ∈RA(τ)

)
. (21)

Using Corollary 1 and that F is Lipschitz continuous with compact values
we have from Proposition 3 p. 42 in [1] that K is a compact set in H. So,
for each t ≥ 0 there exist z(t) ∈ K and a subnet of {zτ (t)}τ∈R, which we do
not relabel, such that zτ (t) → z(t) as τ → +∞. Let v be the unique solution
of the problem {

∂v
∂t
(t) + A∞v(t) + z(t) = 0,

v(0) = ψ0.
(22)

With similar computations as in Theorem 3 one can show that v is uniformly
bounded. Subtracting the equation in (20) from the equation in (22) gives

d

dt
(u(t+ τ)− v(t)) + A(t+ τ)u(t+ τ)− A∞v(t) + f(t+ τ)− z(t) = 0

for a.e. t ∈ [0, T ]. Multiplying by u(t + τ) − v(t) and using Lemma 2, we
obtain

1

2

d

dt
‖u(t+ τ)− v(t)‖2H ≤ gτ (t) + ‖zτ (t)− z(t)‖H‖u(t+ τ)− v(t)‖H .

Integrating this last inequality from 0 to t, gives

1

2
‖u(t+ τ)− v(t)‖2H ≤ 1

2
‖ψτ − ψ0‖2H + T ess supt∈[0,+∞)gτ (t)

+

∫ t

0

‖zτ (s)− z(s)‖H‖u(s+ τ)− v(s)‖Hds.

Hence, by the Gronwall inequality

‖u(t+ τ)− v(t)‖H ≤ (‖ψτ − ψ0‖2H + 2T ess supt∈[0,+∞)gτ (t)
)1/2

+

∫ T

0

‖zτ (s)− z(s)‖Hds.
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Using (21) and the Dominated Convergence Theorem, we have

∫ T

0

‖zτ (s)− z(s)‖Hds → 0

as τ → +∞.
Since ψτ →ψ0 in H and ess supt∈[0,+∞)gτ (t) → 0 as τ → +∞, we obtain

u(t+ τ) → v(t) in H as τ → +∞ uniformly in [0, T ].
By Theorem 4, u(t + τ) ∈ K for all t ≥ T2 where K is a compact set in

H which is independent of t in this case of F (t, u) ≡ F (u).
Consider ε > 0 given. Since K is a compact set we have K ⊂ ⋃n

i Bε/4(xi),
x1, · · ·xn ∈ K. Then there exists τ1 = τ1(T2) such that u(T2 + τ), v(T2) ∈
Bε/4(xi0) for τ > τ1 for some 1 ≤ i0 ≤ n. For t > T2 and τ > τ1 we have
t = T2 + s with s+ τ > τ1 for some s > 0. Then

u(t+ τ) = u(T2 + s+ τ) ∈ Bε/4(xi0).

Once u(t+ τ) → v(t) in H as τ → +∞ we have v(t) ∈ Bε/4(xi0).
We have from the previous part that there exists τ2 such that τ > τ2

implies supt∈[0,T2] ‖u(t + τ) − v(t)‖H < ε
2
. Taking τ0 := max{τ1, τ2} we have

that τ > τ0 implies

sup
t∈[0,∞)

‖u(t+ τ)− v(t)‖H ≤ sup
t∈[0,T2]

‖u(t+ τ)− v(t)‖H
+ sup

t∈[T2,∞)

‖u(t+ τ)− v(t)‖H

<
ε

2
+

ε

2
= ε.

Therefore, u(t+ τ) → v(t) in H as τ → +∞ uniformly in [0,∞).
From Theorem 3.3 in [5], z ∈ SelF (v) and the result follows. �
The next result gives the desired asymptotic upper semi-continuous con-

vergence.

Theorem 11. limt→+∞ dist(A(t),A∞) = 0.

Proof: Suppose that ψτ ∈ A(τ) and ψτ → ψ0 in H. From Theorem 10, for
each solution u of (15) there exists a solution v of (18) such that u(t+ τ) →
v(t) in H as τ → +∞ uniformly in t ≥ 0. Corollary 1 and Theorem 9 then
yield limt→+∞ dist(A(t),A∞) = 0. �
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