期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:448
On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents
Article
Gao, Fashun1  Yang, Minbo1 
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词: Choquard equation;    Hardy-Littlewood-Sobolev critical exponent;    Concave and convex nonlinearities;    Brezis-Nirenberg problem;   
DOI  :  10.1016/j.jmaa.2016.11.015
来源: Elsevier
PDF
【 摘 要 】

We consider the following nonlinear Choquard equation with Dirichlet boundary condition -Delta u = (integral(Omega) vertical bar u vertical bar(2*)(mu)/vertical bar x - y vertical bar(mu) dy) vertical bar u vertical bar(2)(mu)*(-2)u + lambda f(u) in Omega, where Omega is a smooth bounded domain of R-N, lambda > 0, N >= 3, 0 < mu < N and 2(mu)*, is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. Under suitable assumptions on different types of nonlinearities f(u), we are able to prove some existence and multiplicity results for the equation by variational methods. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2016_11_015.pdf 610KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次