期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:405
Sharp corner points and isometric extension problem in Banach spaces
Article
Ding, Guang-Gui1,2  Li, Jian-Ze2,3,4 
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
关键词: Isometric extension;    Sharp corner point;    Weak*-exposed point;    Weak-Asplund space;    Asplund generated space;    Weakly compactly generated space;    Gateaux differentiable space;   
DOI  :  10.1016/j.jmaa.2013.04.002
来源: Elsevier
PDF
【 摘 要 】

In this article, we begin using some geometric methods to study the isometric extension problem in general real Banach spaces. For any Banach space Y. we define a collection of sharp corner points of the unit ball B-1(Y*), which is empty if Y is strictly convex and dim Y >= 2. Then we prove that any surjective isometry between two unit spheres of Banach spaces X and Y has a linear isometric extension on the whole space if Y is a gateaux differentiability space (in particular, separable spaces or reflexive spaces) and the intersection of sharp corner points and weak*-exposed points of B(Y*) is weak*-dense in the latter. Moreover, we study the sharp corner points in many classical Banach spaces and solve isometric extension problem affirmatively in the case that Y is (l(1)), c(0)(Gamma), c(Gamma), l(infinity) (Gamma) or some C(Omega). (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_04_002.pdf 423KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次