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a b s t r a c t

In this article, we begin using some geometric methods to study the isometric extension
problem in general real Banach spaces. For any Banach space Y , we define a collection
of ‘‘sharp corner points’’ of the unit ball B1(Y ∗), which is empty if Y is strictly convex
and dim Y ≥ 2. Then we prove that any surjective isometry between two unit spheres
of Banach spaces X and Y has a linear isometric extension on the whole space if Y is a
Gâteaux differentiability space (in particular, separable spaces or reflexive spaces) and
the intersection of ‘‘sharp corner points’’ and weak∗-exposed points of B(Y ∗) is weak∗-
dense in the latter. Moreover, we study the ‘‘sharp corner points’’ in many classical
Banach spaces and solve isometric extension problem affirmatively in the case that Y is
(ℓ1), c0(Γ ), c(Γ ), ℓ∞(Γ ) or some C(Ω).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The famous Mazur–Ulam theorem in [32] stated that any surjective isometry V between two real normed spaces with
V (θ) = θ (zero element) must be linear. In [31], P. Mankiewicz proved that any surjective isometry between the convex
bodies (i.e. open connected subsets) of two normed spaces can be extended to a surjective affine isometry on the whole
space.

In 1987, D. Tingley proposed the following problem in [37].

Problem 1.1. Let X and Y be real normed spaceswith unit spheres S1(X) and S1(Y ), respectively. Suppose that V0 : S1(X) →

S1(Y ) is a surjective isometry. Is V0 necessarily the restriction of a linear or affine isometry on X?

We only consider the isometric extension problem in real normed spaces, since it is clearly negative in the complex case.
This problem is interesting and easy to understand. Moreover, it is very important. If this problem has a positive answer,
then the local geometric property of a mapping on the unit sphere will determine the property of themapping on the whole
space.

However, it is very difficult to solve. As Professor E. Odell said (in a recommendation letter for the first author to apply
for a Science Award in 2012): ‘‘this is a very difficult problem that remains unsolved after 25 years’’. In [37], D. Tingley
only proved that any isometry V0 between the unit spheres S1(X(n)) and S1(Y(m)) necessarily maps the antipodal points to
antipodal points, that isV0(−x) = −V0(x) for any x ∈ S1(X(n)) (bothX(n) and Y(m) are real finite-dimensional normed spaces).

For quite a while (about 15 years), there has been no progress at all on this problem, until it was solved in Hilbert space
and ℓp(Γ ) space (1 ≤ p ≤ ∞) (see [10,8,9,6,7]). In the past decade, the isometric extension problem was considered in
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various classical Banach spaces and many good results were obtained, through studying the specific form of norm and a lot
of special skills (see [12]).

By now, the isometric extension problemhas been solved affirmatively if X is any classical Banach space and Y is a general
Banach space (see [5,10–15,19,21,22,24,27–30,34,36,38–42]). However, little progress has been obtained if X and Y are
both general Banach spaces, even in the two-dimensional case. Recently, the isometric extension problem was considered
in somewhere-flat Banach spaces and polyhedral Banach spaces and some impressive results were obtained (see [2,25]).
Moreover, this problem was also considered in the F-spaces (see [1,20,35,43]).

In this article, we attempt to study the isometric extension problem in general Banach spaces through some geometric
properties of the Banach spaces including weak∗-exposed points, Gâteaux differentiability, and so on.

In Section 2, we mainly prove some important lemmas and give the definition of ‘‘sharp corner points’’ of the unit ball
B1(Y ∗), where Y ∗ is the dual space of a Banach space Y , denoted by SC(Y ∗). We show that there exists no such kind of points
in B1(Y ∗) if Y is strictly convex and dimY ≥ 2. Furthermore, for any Banach space Y , we prove that any smooth point in the
unit sphere S1(Y ∗) is not a sharp corner point.

In Section 3, we give some basic definitions and well-known results concerning Gâteaux differentiability space, weak-
Asplund space, Asplund generated space, and so on. These well-known results can be found in [3,4,16,26,33] and take an
important role in many corollaries of this article.

In Section 4, we prove the main result (Theorem 4.2) of this article.

Theorem 1.2. Let X be a Banach space and Y be a Gâteaux differentiability space. If P (Y ∗) is the set of weak∗-exposed points in
B1(Y ∗) and P (Y ∗) ∩ SC(Y ∗) isweak∗-dense in P (Y ∗), then any surjective isometry between two unit spheres S1(X) and S1(Y )
can be extended to a linear isometry on the whole space.

From this theorem, we deduce a result (Theorem 4.11) concerning the isometric extension of isometry between unit
spheres S1(X) and S1(Y ), where X is a general Banach space and Y is an Asplund generated space.

Theorem 1.3. Let X be a Banach space and Y be an Asplund generated space. Suppose that V0 is an isometric mapping from the
unit sphere S1(X) into S1(Y ), which satisfies the following condition:

(∗) For any x1, x2 ∈ S1(X) and λ1, λ2 ∈ R,

∥λ1V0x1 + λ2V0x2∥ = 1 =⇒ λ1V0x1 + λ2V0x2 ∈ V0[S(X)].

Let Z = span{V0x : x ∈ S1(X)}. Suppose that P (Z∗) ∩ SC(Z∗) is weak∗-dense in P (Z∗). Then V0 can be extended to a linear
isometry on the whole space.

Consequently, we obtain that if Y = (ℓ1), c0(Γ ), c(Γ ), ℓ∞(Γ ) or some C(Ω) (for example, the set of ‘‘Gδ-points’’ is dense
in Ω), then the answer for the isometric extension problem is also affirmative.

It is worthwhile to say more about the geometric methods used in this article. In our former papers on this problem, we
had to use different kinds of methods in various classical Banach spaces, because wemainly use the analytic methods which
concerns the specific form of the norm. However, we can discuss two kinds of spaces together in this article because we use
the geometric methods here.

Before we start, let us first set some notations and recall some definitions. In this article, all normed spaces are over R
and Y ∗ denote the dual space of a normed space Y . S1(Y )(B1(Y )) denotes the unit sphere (unit ball) of a normed space Y.

Notation 1.4. Let Y be a normed space and y∗

0 ∈ S1(Y ∗):

A(y∗

0) := {y ∈ S1(Y ) : y∗

0(y) = 1};
A(Y ∗) := {y∗

∈ S1(Y ∗) : A(y∗) ≠ ∅};

P(y∗

0) := {y ∈ S1(Y ) : y∗

0(y) = 1, y∗(y) < 1 for any y∗
∈ S1(Y ∗) with y∗

≠ y∗

0};

P (Y ∗) := {y∗
∈ S1(Y ∗) : P(y∗) ≠ ∅}.

Remark 1.5. Let Y be a normed space and y∗

0 ∈ S1(Y ∗). A(y∗

0) is the set of ‘‘norm-attaining points’’ of y∗

0 . A(Y ∗) is the subset
of S1(Y ∗) in which any y∗ norm-attains at some point in S1(Y ). P(y∗

0) is the set of ‘‘peak-functions’’ J(y) ∈ Y ∗∗, which have
(only) a peak at y∗

0 (where J is the canonical mapping from Y to Y ∗∗). y∗

0 ∈ P (Y ∗) is called the weak∗-exposed point of unit
ball B1(Y ∗). It is evident that any y0 ∈ P(y∗

0) is a smooth point of S1(Y ). Conversely, if y0 is a smooth point of S1(Y ), there
exists a unique y∗

0 ∈ P (Y ∗) with y∗

0(y0) = 1 (see [4,23]).

2. Some lemmas

We first introduce Lemma 2.1 in [41] as follows.

Lemma 2.1. Let X and Y be normed spaces. Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). Then we have

∥x1 + x2∥ = 2 ⇐⇒ ∥V0x1 + V0x2∥ = 2, ∀ x1, x2 ∈ S1(X).
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Proof. We only need to prove the ‘‘=⇒’’ part, because V−1
0 is also a surjective isometry from S1(Y ) onto S1(X). Suppose that

∥x1 + x2∥ = 2. By the Hahn–Banach theorem, there exists x∗

0 ∈ S1(X∗) such that x∗

0(x1 + x2) = ∥x1 + x2∥ = 2. Hence

2 = ∥x1 + x2∥ = |x∗

0(x1 + x2)| ≤ |x∗

0(x1)| + |x∗

0(x2)| ≤ 2,

and we have

x∗

0(x1) = x∗

0(x2) = 1. (2.1)

Let xn =

1 −

1
n


x1 +

1
nx2 (∀ n ∈ N). By Eq. (2.1), we get a sequence {xn} ⊆ S1(X). For each n ∈ N and x ∈ S1(X), suppose

that

∥xn + x∥ = 2. (2.2)

By the Hahn–Banach theorem and the similar method, there exists x∗

(n,x) ∈ S1(X∗) such that x∗

(n,x)(xn +x) = 2, which implies
that

x∗

(n,x)(x1) = x∗

(n,x)(x2) = x∗

(n,x)(x) = 1.

Therefore, we obtain

∥x2 + x∥ = 2, (2.3)

since

2 = x∗

(n,x)(x2 + x) ≤ ∥x2 + x∥ ≤ 2.

Note that

∥xn − V−1
0 (−V0xn)∥ = ∥V0xn + V0xn∥ = ∥2V0xn∥ = 2, ∀ n ∈ N. (2.4)

By the similar methods we used to deduce (2.3) from (2.2), we have that

∥x2 − V−1
0 (−V0xn)∥ = 2, ∀ n ∈ N (2.5)

by (2.4). Note that V0 is isometric and (2.5). We can obtain

∥V0x2 + V0xn∥ = 2, ∀ n ∈ N.

Let n → ∞. We get ∥V0x2 + V0x1∥ = 2 and complete the proof. �

To get Lemma 2.3, we need to prove the following lemma.

Lemma 2.2. Let X and Y be normed spaces. Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). If y∗

0 ∈ P (Y ∗),
then V−1

0 [A(y∗

0)] ⊆ S1(X) is convex.

Proof. Since y∗

0 ∈ P (Y ∗), there exists y0 ∈ P(y∗

0)(⊆ A(y∗

0)). Therefore, for any x1, x2 ∈ V−1
0 [A(y∗

0)] and λ ∈ [0, 1], we have

2 = y∗

0(y0 + V0x1) ≤ ∥y0 + V0x1∥ ≤ 2,

that is ∥y0 + V0x1∥ = 2. By Lemma 2.1, we have that ∥V−1
0 y0 + x1∥ = 2, and there exists x∗

1 ∈ S1(X∗) such that

x∗

1(V
−1
0 y0 + x1) = 2,

by the Hahn–Banach theorem. Note that |x∗

1(V
−1
0 y0)| ≤ 1 and |x∗

1(x1)| ≤ 1. We get that

x∗

1(V
−1
0 y0) = x∗

1(x1) = 1,

and thus

2 = x∗

1


V−1
0 y0 +

V−1
0 y0 + x1

2


≤

V−1
0 y0 +

V−1
0 y0 + x1

2

 ≤ 2,

that isV−1
0 y0 +

V−1
0 y0 + x1

2

 = 2.

By Lemma 2.1, we obtainy0 + V0


V−1
0 y0 + x1

2

 = 2.
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Therefore, there exists y∗

1 ∈ S1(Y ∗) such that

y∗

1(y0) + y∗

1


V0


V−1
0 y0 + x1

2


= 2,

by the Hahn–Banach theorem. From the similar arguments as above, we get that

y∗

1(y0) = y∗

1


V0


V−1
0 y0 + x1

2


= 1. (2.6)

Note Eq. (2.6) and y0 ∈ P(y∗

0). We have y∗

1 = y∗

0 and

y∗

0


V0


V−1
0 y0 + x1

2


= 1. (2.7)

Since x2 ∈ V−1
0 [A(y∗

0)], we get that y∗

0


V0x2 + V0


V−1
0 y0+x1

2


= 2, which implies that

V0x2 + V0


V−1
0 y0+x1

2

 = 2. By

Lemma 2.1, we get thatx2 +
V−1
0 y0 + x1

2

 = 2,

and there exists x∗

2 ∈ S1(X∗) such that

x∗

2


x2 +

V−1
0 y0 + x1

2


= 2,

by the Hahn–Banach theorem. Note that |x∗

2(x2)|, |x
∗

2(V
−1
0 y0)|, |x∗

2(x1)| ≤ 1. We have

x∗

2(V
−1
0 y0) = x∗

2(x1) = x∗

2(x2) = 1,

and

x∗

2[V
−1
0 y0 + (λx1 + (1 − λ)x2)] = 2.

Therefore, we get that ∥V−1
0 y0 + (λx1 + (1 − λ)x2)∥ = 2, which implies that

∥y0 + V0(λx1 + (1 − λ)x2)∥ = 2, (2.8)

by Lemma 2.1. Then, from (2.8) and the similar argument we used to deduce (2.7), we can also obtain

y∗

0[V0(λx1 + (1 − λ)x2)] = y∗

0(y0) = 1,

that is λx1 + (1 − λ)x2 ∈ V−1
0 [A(y∗

0)]. Thus V
−1
0 [A(y∗

0)] is convex and the proof is completed. �

Lemma 2.3. Let X and Y be normed spaces. Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). If y∗

0 ∈ P (Y ∗),
there exists x∗

0 ∈ S1(X∗) such that

y∗

0(y) = ±1 =⇒ x∗

0(V
−1
0 y) = y∗

0(y),

for any y ∈ S1(Y ).

Proof. If y ∈ S1(Y ) and y∗

0(y) = 1, then y ∈ A(y∗

0). By Lemma 2.2, V−1
0 [A(y∗

0)] ⊆ S1(X) is convex and does not meet with the
interior of B1(X). (It is evident that the interior of B1(X) is not empty.) Therefore, by the Eidelheit Separation theorem, there
exists x∗

0 ∈ S1(X∗) such that

sup{x∗

0(x̄) : x̄ ∈ B1(X)} ≤ inf{x∗

0(x) : x ∈ V−1
0 [A(y∗

0)]},

which implies that

1 ≤ inf{x∗

0(x) : x ∈ V−1
0 [A(y∗

0)]} ≤ inf{∥x∗

0∥ · ∥x∥ : x ∈ V−1
0 [A(y∗

0)]} = 1,

that is x∗

0(x) = 1 for any x ∈ V−1
0 [A(y∗

0)].
Furthermore, ify ∈ S1(Y ) and y∗

0(y) = −1, then −y ∈ A(y∗

0). Since y∗

0 ∈ P (Y ∗), there exists y0 ∈ P(y∗

0) (⊆ A(y∗

0)), and
we have that

2 ≥ ∥V−1
0 y − V−1

0 y0∥ = ∥y − y0∥ ≥ |y∗

0(y − y0)| = 2,
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that is ∥V−1
0 y0 + (−V−1

0 y)∥ = 2. By Lemma 2.1, we have ∥y0 + V0(−V−1
0 y)∥ = 2. Therefore, there exists y∗

1 ∈ S1(Y ∗) such
that

y∗

1(y0 + V0(−V−1
0 y)) = 2,

by the Hahn–Banach theorem. Then we have

y∗

1(y0) = y∗

1(V0(−V−1
0 y)) = 1. (2.9)

Note that Eq. (2.9) and y0 ∈ P(y∗

0). We have that y∗

1 = y∗

0 and thus y∗

0[V0(−V−1
0 y)] = 1. By the conclusion in the previous

part of this proof, we obtain immediately that x∗

0(−V−1
0 y) = 1, that is x∗

0(V
−1
0 y) = −1. Thus the proof is completed. �

We will give the definition of ‘‘sharp corner points’’. These points play an important role in our result concerning the
isometric extension problem in Gâteaux differentiability space (in particular, separable spaces or reflexive spaces).

Definition 2.4. Let Y be normed space. Then y∗

0 ∈ S1(Y ∗) is called a sharp corner point of B1(Y ∗), if it satisfies the following
conditions:

(i) For any y ∈ S1(Y ) with |y∗

0(y)| < 1 and ε > 0, there existsyε ∈ S1(Y ) such that

y∗

0(yε) = 1 and ∥yε ± y∥ ≤ 1 + |y∗

0(y)| + ε.

(ii) For any y ∈ S1(Y ) with 0 < |y∗

0(y)| < 1 and ε > 0, there exists yε ∈ S1(Y ) such that

y∗

0(yε) =
y∗

0(y)
|y∗

0(y)|
and ∥yε − y∥ ≤ 1 − |y∗

0(y)| + ε.

These sharp corner points of B1(Y ∗) are denoted by SC(Y ∗). Then we will give an important lemma as follows.

Lemma 2.5. Let X and Y be normed spaces. Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). If y∗

0 ∈ P (Y ∗) ∩

SC(Y ∗), then we have

x∗

0(V
−1
0 y) = y∗

0(y) ∀ y ∈ S1(Y ),

where x∗

0 ∈ S1(X∗) is the functional obtained in Lemma 2.3.

Proof. We take two steps to complete the proof:
(a) |y∗

0(y)| = |x∗

0(V
−1
0 y)| for any y ∈ S1(Y ).

Indeed, for any y ∈ S1(Y ), we can assume that |y∗

0(y)| < 1 (otherwise we can immediately get (a) by Lemma 2.3). Note
y∗

0 ∈ SC(Y ∗) and Lemma 2.3. For any ε > 0, there existsyε ∈ S1(Y ) such that

x∗

0(V
−1
0 yε) = y∗

0(yε) = 1,

and

1 ± x∗

0(V
−1
0 y) = | ± 1 − x∗

0(V
−1
0 y)| = |x∗

0(V
−1
0 (±yε)) − x∗

0(V
−1
0 y)|

≤ ∥V−1
0 (±yε) − V−1

0 y∥ = ∥yε ± y∥ ≤ 1 + |y∗

0(y)| + ε.

Since ε is arbitrary, we obtain that

|x∗

0(V
−1
0 y)| ≤ |y∗

0(y)|, ∀ y ∈ S1(Y ).

If |y∗

0(y)| = 0, it is clear that |x∗

0(V
−1
0 y)| = 0. Otherwise, note that y∗

0 ∈ SC(Y ∗) and Lemma 2.3. For any ε > 0, there exists
yε ∈ S1(Y ) such that

|x∗

0(V
−1
0 yε)| = |y∗

0(yε)| = 1,

and

1 − |x∗

0(V
−1
0 y)| = |x∗

0(V
−1
0 yε)| − |x∗

0(V
−1
0 y)|

≤ |x∗

0(V
−1
0 yε) − x∗

0(V
−1
0 y)|

≤ ∥V−1
0 yε − V−1

0 y∥
= ∥yε − y∥ ≤ 1 − |y∗

0(y)| + ε.

Therefore, we get that

|y∗

0(y)| ≤ |x∗

0(V
−1
0 y)|, ∀ y ∈ S1(Y )

and complete the first step.
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(b) y∗

0(y) = x∗

0(V
−1
0 y) for any y ∈ S1(Y ).

Indeed, if y∗

0(y) = 0, then we have x∗

0(V
−1
0 y) = 0 because of (a). Otherwise, note that y∗

0 ∈ SC(Y ∗) and Lemma 2.3. For
any ε > 0, there exists yε ∈ S1(Y ) such that

x∗

0(V
−1
0 yε) = y∗

0(yε) =
y∗

0(y)
|y∗

0(y)|
,

and

1 = |y∗

0(yε)| = |x∗

0(V
−1
0 yε)| ≤ |x∗

0(V
−1
0 y)| + |x∗

0(V
−1
0 yε) − x∗

0(V
−1
0 y)|

≤ |y∗

0(y)| + |x∗

0(V
−1
0 yε − V−1

0 y)| ≤ |y∗

0(y)| + ∥V−1
0 yε − V−1

0 y∥
= |y∗

0(y)| + ∥yε − y∥ ≤ 1 + ε.

We can get

0 ≤ |x∗

0(V
−1
0 yε) − x∗

0(V
−1
0 y)| − ( |x∗

0(V
−1
0 yε)| − |x∗

0(V
−1
0 y)| ) ≤ ε,

that is

0 ≤

 y∗

0(y)
|y∗

0(y)|
− x∗

0(V
−1
0 y)

−  y∗

0(y)
|y∗

0(y)|
− |x∗

0(V
−1
0 y)

  ≤ ε.

Since ε is arbitrary, we have that x∗

0(V
−1
0 y) and y∗

0(y) have the same sign because y∗

0(yε) =
y∗0(y)
|y∗0(y)| . The proof is completed. �

Remark 2.6. In Section 4, wewill show that if Y is one of the spaces (ℓ1), (c0) or C(K) (K is a compactmetric space), thenwe
have that P (Y ∗) ⊆ SC(Y ∗). If Y is one of the spaces c0(Γ ), c(Γ ), ℓ∞(Γ ) (Γ is an infinite index set) and some C(Ω) (Ω is a
compact Hausdorff space), then we have that P (Y ∗) ∩ SC(Y ∗) is weak∗-dense in P (Y ∗). Therefore, we will apply our main
result Theorem 4.2 to these spaces and get a positive answer to the isometric extension problem. Here, the corresponding
results for spaces c0(Γ ), c(Γ ) and C(Ω) are new.

Proposition 2.7. Let Y be a strictly convex Banach space and dim Y ≥ 2. Then we have that SC(Y ∗) = ∅.

Proof. It is clear that if y∗

0 ∈ S1(Y ∗), there exists at most one element y0 ∈ S1(Y ) such that y∗

0(y0) = 1. Otherwise, if there
exists y1 ∈ S1(Y ) such that y0 ≠ y1 and y∗

0(y1) = 1, then for any λ ∈ (0, 1), we have that

1 = y∗

0(λy0 + (1 − λ)y1) ≤ ∥y∗

0∥ · ∥λy0 + (1 − λ)y1∥ < 1,

which is impossible. Assume that SC(Y ∗) ≠ ∅ and y∗

0 ∈ SC(Y ∗). Note that ker y∗

0 ≠ {θ} since dim Y ≥ 2. For any
y ∈ S1(Y ) ∩ ker y∗

0, y ≠ θ and ε > 0, there exists unique ỹ such that

y∗

0(y) = 1 and ∥y0 ± y∥ ≤ 1 + |y∗

0(y)| + ε = 1 + ε.

Since ε is arbitrary, we get that ∥y0 ± y∥ ≤ 1 and

2 = ∥y0 + y + y0 − y∥ ≤ ∥y0 + y∥ + ∥y0 − y∥ ≤ 2,

that is

∥y0 + y + y0 − y∥ = ∥y0 + y∥ + ∥y0 − y∥.

Since Y is strictly convex, we get that y0 + y = y0 − y, which is impossible. �

Proposition 2.8. Let Y be a real Banach space. Then any smooth point of S1(Y ∗) is not a sharp corner point.

Proof. Suppose that f0 is a smooth point of S1(Y ∗). There is a unique y∗∗

0 ∈ S1(Y ∗∗) such that y∗∗

0 (f0) = 1. If there does not
exist y0 ∈ S1(Y ) such that g(y0) = y∗∗

0 (g) for any g ∈ Y ∗, that is, A(f ) = ∅, f0 is clearly not a sharp corner point.
If y0 ∈ S1(Y ) given above exists, we assume that f0 is also a sharp corner point. For any y ∈ S1(Y ) with 0 < f0(y) < 1 and

ε > 0, we see that ∥y − y0∥ ≤ 1 − f0(y) + ε, that is,

∥y − y0∥ ≤ 1 − f0(y) = f0(y0) − f0(y).

Note that f0(y0) − f0(y) ≤ ∥y − y0∥. We have that

∥y − y0∥ = f0(y0) − f0(y) = f0(y0 − y),

which implies that

f0


y0 − y

∥y − y0∥


= 1.

However, it is impossible since f0 ∈ S1(Y ∗) is a smooth point. �
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Remark 2.9. Note that (ℓ2) is strictly convex and (ℓ2)∗ = (ℓ2). By Proposition 2.7, there exist no sharp corner points in
the unit ball of (ℓ2)∗ and so does (ℓ2). More generally, for any self-conjugate and uniformly convex Banach space Y , we can
prove that SC(Y ∗) = ∅ by Proposition 2.7 since any uniformly convex Banach space is strictly convex. Moreover, we can
also get that SC(Y ∗) = ∅ by Proposition 2.8 since Y ∗ is uniformly smooth.

3. Some well-known results for Gâteaux differentiability spaces

In this section, let us recall some results for Gâteaux differentiability space, separable space, Asplund generated space,
and so on (see [3,4,16,26,33]).

Definition 3.1. A Banach space E is said to be a Gâteaux differentiability space (weak-Asplund space) if for any continuous
convex function f on it, there exists a dense (dense Gδ) subset E0 ⊆ E such that f is Gâteaux differentiable at any x0 ∈ E0.

Remark 3.2. Since the Gâteaux differentiability condition for a norm is homogeneous, a norm is differentiable at x if it is
differentiable at λx for some scalar λ. Consequently, if E is a Gâteaux differentiability space, there exists a dense subset of
the unit sphere S1(E) where ∥x∥ is Gâteaux differentiable.

Proposition 3.3. A Banach space E is a Gâteaux differentiability space if and only if any weak∗ compact convex subset of E∗ is
theweak∗ closed convex hull of itsweak∗-exposed points (see [26]).

Proposition 3.4. Let E and E1 be Banach spaces. Suppose that T : E → E1 is linear and continuous. If E is a Gâteaux differentia-
bility space and T (E) is dense in E1, then E1 is also a Gâteaux differentiability space. In particular, if a Banach space F is the image
of a Gâteaux differentiability space by a linear continuous mapping, then F is also a Gâteaux differentiability space.

Definition 3.5. A Banach space E is called Asplund generated if there exists an Asplund space X and a linear continuous
operator T : X → E such that T (X) is dense in E.

Remark 3.6. Recall that a Banach space E is called an Asplund space if for any continuous convex function f on it, there exists
a dense Gδ subset E0 ⊆ E such that f is Fréchet differentiable at any x0 ∈ E0. Moreover, we have the following important
facts:

(i) A Banach space E is an Asplund space if and only if E∗ has the Radon–Nikodym property.
(ii) All the reflexive spaces and c0(Γ ) space (for any index set Γ ) are Asplund spaces.

Proposition 3.7. Any weakly compactly generated space is an Asplund generated space. Any subspace of an Asplund generated
space is a weak-Asplund space.

Proposition 3.8. Any separable Banach space is aweak-Asplund space.Moreover, if a Banach space E whose dual space E∗ admits
a strictly convex norm, then E is also a weak-Asplund space (see [3]).

Definition 3.9. Let Ω be a compact space. Then t0 ∈ Ω is called a Gδ-point if there exists a countable collection of open
subsets {Gn ⊆ Ω : n ∈ N} such that {t0} =


∞

n=1 Gn. Ω is said to be scattered if any subset of Ω has an isolated point.

Proposition 3.10. Let Ω be a compact space. Then C(Ω) is Asplund if and only if Ω is scattered (see [16]).

Remark 3.11. It is still an open question: What additional properties should Ω have such that C(Ω) is a Gâteaux
differentiability space (a weak-Asplund space)? We only know the following result: if C(Ω) is a Gâteaux differentiability
space (a weak-Asplund space), then Ω is sequentially compact, and for any closed subset F ⊆ Ω , the set F0 of Gδ-points of
F is dense in F (F0 contains a dense Gδ completely metrizable subset of F ) (see [16, Theorem 2.2.3]). Therefore, we have to
point out that a Banach space E may not be a Gâteaux differentiability space if the set of Gâteaux differentiable points of
S1(E) is a dense subset.

4. Main theorems

In this section, we first introduce a result which can be seen in [17,43] (in [43], the proof was simplified).

Theorem 4.1. Let X and Y be normed spaces. Suppose that V0 is an isometry from S1(X) into S1(Y ) and

∥V0x − |λ|V0y∥ ≤ ∥x − |λ|y∥, ∀ x, y ∈ S1(X), λ ∈ R.

Then V0 can be extended to an isometry on the whole space. Moreover, if V0 is surjective, then V0 can be linearly extended too.



304 G.-G. Ding, J.-Z. Li / J. Math. Anal. Appl. 405 (2013) 297–309

Sketch of proof. For integrating this paper, we write the main idea of the proof as follows: Let

V x =

∥x∥V0


x

∥x∥


, x ≠ θ;

θ, x = θ.

Then we have that ∥Vx − Vy∥ ≤ ∥x − y∥ for any x, y ∈ S1(Y ) and ∥Vx − Vy∥ = ∥x − y∥ if ∥x∥ = ∥y∥, x = θ or y = θ .
Indeed, V is an isometry. Otherwise, there exist x0, y0 ∈ X with ∥y0∥ > ∥x0∥ > 0 such that ∥Vx0 − Vy0∥ < ∥x0 − y0∥. We
can take z0 ∈ X such that ∥z0∥ = ∥y0∥ and z0 ∈

−−→y0x0 (the semi-line with the starting point y0 and crossing x0). Then we get
the following inequality:

∥z0 − y0∥ = ∥z0 − x0∥ + ∥x0 − y0∥ > ∥Vz0 − Vx0∥ + ∥Vx0 − Vy0∥
≥ ∥Vz0 − Vy0∥,

which is impossible. If V0 is surjective, we can also get a linear isometric extension by the Mazur–Ulam theorem. �

We can now show our main result as follows.

Theorem 4.2. Let X be a Banach space and Y be aGâteaux differentiability space. Suppose that V0 is a surjective isometry between
S1(X) and S1(Y ). If P (Y ∗) ∩ SC(Y ∗) isweak∗-dense in P (Y ∗), then V0 can be extended to a linear isometry on the whole space.

Proof. For any x1, x2 ∈ S1(X) and λ ∈ R, we have that

∥V0x1 − |λ|V0x2∥ = sup
y∗∈S1(Y∗)

|y∗(V0x1 − |λ|V0x2)|.

By Proposition 3.3, we get that

∥V0x1 − |λ|V0x2∥ = sup
y∗0∈P (Y∗)

|y∗

0(V0x1 − |λ|V0x2)|

= sup
y∗0∈P (Y∗)∩SC(Y∗)

|y∗

0(V0x1 − |λ|V0x2)|. (4.1)

By Lemma 2.5, for any y∗

0 ∈ P0(Y ∗), there exists x∗

0 ∈ S1(X∗) (x∗

0 is obtained in Lemma 2.3) such that

|y∗

0(V0x1 − |λ|V0x2)| = |y∗

0(V0x1) − y∗

0(|λ|V0x2)| = |x∗

0(x1) − x∗

0(|λ|x2)|

≤ ∥x1 − |λ|x2∥. (4.2)

Note Eqs. (4.1) and (4.2). We get immediately that

∥V0x1 − |λ|V0x2∥ ≤ ∥x1 − |λ|x2∥, ∀ x1, x2 ∈ S1(X), λ ∈ R,

and complete the proof because of Theorem 4.1. �

Corollary 4.3. Let X be a Banach space and Y be a separable Banach space (more generally, Y ∗ admits a strictly convex norm).
Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). If P (Y ∗) ∩ SC(Y ∗) isweak∗-dense in P (Y ∗), then V0 can be
extended to a linear isometry on the whole space.

Proof. Note that any weak-Asplund space is a Gâteaux differentiability space. We get the conclusion immediately by
Proposition 3.8. �

Corollary 4.4. Let X be a Banach space and Y = (ℓ1). Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). Then
V0 can be extended to a linear isometry on the whole space.

Proof. Note that Y is separable and Corollary 4.3. We only need to check that P (Y ∗) ⊆ SC(Y ∗). It is easy to see that

P (Y ∗) = { {θn} : {θn} ∈ (ℓ∞), θn = ±1, n ∈ N}.

Let y∗

0 ∈ P (Y ∗) and y ∈ S1(Y ) with |y∗

0(y)| < 1. If y∗

0 = {θ0
n } and y = {y(n)}, we can takey = {y(n)} such thaty(n) = θ0

n |y(n)|, ∀ n ∈ N.

Then we have that {y(n)} ∈ S1(Y ), y∗

0(y) = 1 and

∥y ± y∥ =

∞
n=1

|y(n) ± y(n)| =

∞
n=1

| θ0
n |y(n)| ± y(n) |

=

∞
n=1

| |y(n)| ± θ0
n y(n)| =

∞
n=1

|y(n)| ±

∞
n=1

θ0
n y(n)

= 1 ± y∗

0(y) ≤ 1 + |y∗

0(y)|.
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Moreover, if y∗

0(y) ≠ 0, we can also take y =
y∗0(y)
|y∗0(y)| ·y and have that

∥y − y∥ =

∞
n=1

 y∗

0(y)
|y∗

0(y)|
· θ0

n |y(n)| − y(n)
 =

∞
n=1

 |y(n)| −
y∗

0(y)
|y∗

0(y)|
· θ0

n y(n)


=

∞
n=1

|y(n)| −
y∗

0(y)
|y∗

0(y)|

∞
n=1

θ0
n y(n) = 1 −

y∗

0(y)
|y∗

0(y)|
y∗

0(y) = 1 − |y∗

0(y)|.

Then we complete the proof. �

Corollary 4.5. Let X be a Banach space and Y = (c0). Suppose that V0 is a surjective isometry between S1(X) and S1(Y ). Then
V0 can be extended to a linear isometry on the whole space.

Proof. Note that Y is separable and Corollary 4.3. We only need to check that P (Y ∗) ⊆ SC(Y ∗). It is easy to see that

P (Y ∗) = {±e∗

n : n ∈ N},

where e∗
n = (0, . . . , 0,

(n)
1 , 0, . . .) ∈ (ℓ1) for any n ∈ N. Let e∗

n0 ∈ P (Y ∗) and y ∈ S1(Y ) with |e∗
n0(y)| < 1. We can takey = en0 ∈ S1(Y ). Then we have that

∥y ± y∥ = ∥{en0(n) ± y(n)}∥ = sup
n∈N

|en0(n) ± y(n)|

≤ 1 + |y(n0)| = 1 + |e∗

n0(y)|.

Moreover, if e∗
n0(y) ≠ 0, we can take

y = y +


e∗
n0(y)

|e∗
n0(y)|

− e∗

n0(y)


en0 ∈ S1(Y ),

that is, y = {y(n)} with

y(n) =


y(n0)

|y(n0)|
, if n = n0;

y(n), if n ≠ n0.

We can get that

∥y − y∥ = sup
n

|y(n) − y(n)| =

 y(n0)

|y(n0)|
− y(n0)


= 1 − |y(n0)| = 1 − |e∗

n0(y)|.

Then we complete the proof. �

Corollary 4.6. Let X be a Banach space and Y = C(K) (K is a compact metric space). Suppose that Z ⊆ Y is a linear closed
subspace, and there exists a dense subset T ⊆ K such that all the ‘‘peak functions’’ whose peak is t ∈ T are in Z. If V0 is an
isometric mapping from S1(X) onto S1(Z), then V0 can be extended to a linear isometry on the whole space.

Proof. Note that C(K) is a separable Banach space and

P (Y ∗) = {±δ∗

k : k ∈ K} (δ∗

k0(y) = y(k0) for every y = y(k) ∈ Y ).

It is easy to see that

{±δ∗

t : t ∈ T } ⊆ P (Z∗)

and {±δ∗
t : t ∈ T } is weak*-dense in P (Z∗). By Corollary 4.3, we only need to prove that δ∗

t0 ∈ SC(Z∗) for any t0 ∈ T
(because it is similar to prove that −δ∗

t0 ∈ SC(Z∗) for any t0 ∈ T ).
For any δ∗

t0 ∈ P (Y ∗), z ∈ S1(Z) with |δ∗
t0(z)| = |z(t0)| ≤ 1, and ε > 0 (if z(t0) ≠ 0, we also assume that ε <

|z(t0)|
2 ),

there exists an open neighborhood G(t0) of t0 in K such that

|z(k) − z(t0)| < ε, ∀ k ∈ G(t0). (4.3)

By Urysohn’s Lemma we can get y(k) ∈ C(K) such that

y(t0) = 1, y(k) ≡ 0 (∀ k ∈ K \ G(t0))
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and

0 ≤ y(k) ≤ 1, ∀ k ∈ K .

Then we can make a ‘‘peak function’’ pt0(k) ∈ C(K) (whose peak is t0 and pt0(t0) = 1), which is equal to 0 on K \ G(t0) and
takes non-negative value on K . Let

zε(k) = min(y(k), pt0(k)).

It is easy to see thatzε(k) is also a ‘‘peak function’’ on K whose peak is t0 and 0 ≤ zε(k) ≤ 1, and thuszε ∈ S1(Z) by the
hypotheses of Z . By (4.3), we have thatzε ± z ∈ Z and

∥zε ± z∥ = max


max
k∈G(t0)

|zε(k) ± z(k)|, max
k∈K\G(t0)

|z(k)|


≤ max


max
k∈G(t0)

|zε(k)| + max
k∈G(t0)

|z(k)|, max
k∈K\G(t0)

|z(k)|


≤ 1 + (|z(t0)| + ε) = 1 + δ∗

t0(z) + ε.

Moreover, if δ∗
t0(z) = z(t0) ≠ 0, we first change above ‘‘peak function’’ pt0(k) into pt0(k) which may be very sharp in above

neighborhood G(t0), and let it satisfy the following condition:

pt0(k) ≤ 1 −
|z(k)| − |z(t0)|
1 − |z(t0)|

, ∀ k ∈ G(t0). (4.4)

When we take

zε = z +


δ∗
t0(z)

|δ∗
t0(z)|

− δ∗

t0(z)

pt0 ,

by the hypotheses of Z , we have that zε ∈ Z and

zε(k) =


z(t0)
|z(t0)|

, if k = t0;

z(k) + (1 − |z(t0)|)
z(t0)
|z(t0)|

pt0(k), if k ∈ G(t0) \ {t0};

z(k), if k ∈ K \ G(t0).

Note that both z(k) and (1 − |z(t0)|)
z(t0)
|z(t0)|

pt0(k) have the same sign because of (4.3). By (4.4), we obtain thatz(k) + (1 − |z(t0)|)
z(t0)
|z(t0)|

pt0(k)
 = |z(k)| + (1 − |z(t0)|)pt0(k) ≤ 1.

Then we have that zε ∈ S1(Z), zε − z ∈ Z and

∥zε − z∥ =

 δ∗
t0(z)

|δ∗
t0(z)|

− δ∗

t0(z)

pt0

 = 1 − |δ∗

t0(z)|.

Then we complete the proof by Corollary 4.3. �

Wewrite Corollary 4.6 in such a form as above because it will be used in Theorem 4.7. As we stated in Remark 3.11, C(Ω)
(Ω is a compact Hausdorff space) may not be a Gâteaux differentiability space even if the set of Gδ-points of Ω is dense in
Ω . However, we can also get the conclusion of Corollary 4.6 by the similar methods.

Theorem 4.7. Let X be a Banach space and Y = C(Ω) (Ω is a compact Hausdorff space). Suppose that there exists a dense subset
T ⊆ Ω such that T contains all the Gδ-points of Ω . If a linear closed subspace Z ⊆ Y contains all such ‘‘peak functions’’ whose
peak is t ∈ T and V0 is an isometric mapping from S1(X) onto S1(Z), then V0 can be extended to a linear isometry on the whole
space.

Proof. It is the case that {±δ∗
t : t ∈ T } ⊆ P (Y ∗) and δ∗

t ∈ SC(Z∗) for any t ∈ T by the similar arguments of Corollary 4.6.
There exists x∗

t ∈ S1(X∗) such that

δ∗

t (z) = x∗

t (V
−1
0 z), ∀ z ∈ S1(Z),
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by Lemma 2.5. Note that T = Ω . We have

∥V0x1 − |λ|V0x2∥ = sup
ω∈Ω

|(V0x1)(ω) − |λ|(V0x2)(ω)|

= sup
t∈T

|(V0x1)(t) − |λ|(V0x2)(t)|

= sup
t∈T

|δ∗

t (V0x1) − |λ|δ∗

t (V0x2)|

= sup
t∈T

|x∗

t (x1) − |λ|x∗

t (x2)|

≤ ∥x1 − |λ|x2∥, ∀ x1, x2 ∈ S1(X).

Then we complete the proof by Theorem 4.1. �

Remark 4.8. Both Corollary 4.6 and Theorem 4.7 generalize the corresponding results in [18].

In Remark 3.11, we stated that (ℓ∞) is not a Gâteaux differentiability space. However, we can get the conclusion of
Corollary 4.5 in (ℓ∞) by the similar methods.

Theorem 4.9. Let X be a Banach space and Y = c0(Γ ), c(Γ ) or ℓ∞(Γ ) (Γ is an infinite index set). Suppose that Z ⊆ Y is a
linear closed subspace and {eγ : γ ∈ Γ } ⊆ Z. If V0 is a surjective isometry between S1(X) and S1(Z), then V0 can be extended to
a linear isometry on the whole space.

Proof. Note that {±e∗
γ : γ ∈ Γ } ⊆ P (Y ∗) where

e∗

γ0
(eγ ) =


1, if γ = γ0;

0, if γ ≠ γ0;

for any γ ∈ Γ . By the similar arguments of Corollary 4.6, we have that e∗
γ ∈ SC∗(Z∗) for any γ ∈ Γ . Therefore there exists

x∗
γ ∈ S1(X∗) such that

e∗

γ (z) = x∗

γ (V−1
0 z), ∀ z ∈ S1(Z),

by Lemma 2.5. We can get that

∥V0x1 − |λ|V0x2∥ = sup
γ∈Γ

|(V0x1)(γ ) − |λ|(V0x2)(γ )|

= sup
γ∈Γ

|e∗

γ (V0x1) − |λ|e∗

γ (V0x2)|

= sup
γ∈Γ

|x∗

γ (x1) − |λ|x∗

γ (x2)|

≤ ∥x1 − |λ|x2∥, ∀ x1, x2 ∈ S1(X).

Then we complete the proof by Theorem 4.1. �

Remark 4.10. By Remark 3.6, we see that c0(Γ ) is an Asplund space and thus a Gâteaux differentiability space. Therefore,
we can also get the conclusion of Theorem 4.9 for c0(Γ ) by Theorem 4.2.

Theorem 4.11. Let X be a Banach space and Y be an Asplund generated space. Suppose that V0 is an isometric mapping from the
unit sphere S1(X) into S1(Y ) which satisfies the following condition:

(∗) For any x1, x2 ∈ S1(X) and λ1, λ2 ∈ R,

∥λ1V0x1 + λ2V0x2∥ = 1 =⇒ λ1V0x1 + λ2V0x2 ∈ V0[S(X)].

Let Z = span{V0x : x ∈ S1(X)}. Suppose that P (Z∗) ∩ SC(Z∗) is weak∗-dense in P (Z∗). Then V0 can be extended to a linear
isometry on the whole space.

Proof. We first prove that S1(Z) = V0[S1(X)]. Note the condition (∗) and the equality
n

k=1

λkV0xk =

n−1
k=1

λkV0xk

 n−1
k=1

λkn−1
k=1

λkV0xk

V0xk + λnV0xn.

By induction, we get that n
k=1

λkV0xk

 = 1 =⇒

n
k=1

λkV0xk ∈ V0[S1(X)]; ∀ xk ∈ S1(X), λk ∈ R (1 ≤ k ≤ n), n ∈ N.
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Therefore, we have that

S1(Z) = V0[S1(X)].

Note Proposition 3.7 and that Z is a closed subspace of Y . The conclusion is clear by Theorem 4.2. �

Corollary 4.12. Suppose that Y in Theorem 4.11 has dual space Y ∗ with RNP (in particular, Y is either reflexive or c0(Γ )-space).
Then the conclusion is also valid.

Proof. It is the direct consequence of Remark 3.6 and Theorem 4.11. �

Corollary 4.13. Suppose that Y in Theorem 4.11 is weakly compact generated. Then the conclusion is also valid.

Proof. It is the direct consequence of Proposition 3.7 and Theorem 4.11. �

Corollary 4.14. Suppose that Y = C(Ω) (Ω is a scattered compact space). Then the conclusion is also valid.
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