期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:412
The variable exponent Sobolev capacity and quasi-fine properties of Sobolev functions in the case p-=1
Article
Hakkarainen, Heikki1  Nuortio, Matti1 
[1] Univ Oulu, Dept Math Sci, POB 3000, FI-90014 Oulu, Finland
关键词: Capacity;    Sobolev capacity;    Variable exponent;    Non-uniformly convex energy;    Lebesgue points;    Quasicontinuity;   
DOI  :  10.1016/j.jmaa.2013.08.063
来源: Elsevier
PDF
【 摘 要 】

In this article we extend the known results concerning the subadditivity of capacity and the Lebesgue points of functions of the variable exponent Sobolev spaces to cover also the case p(-) = 1. We show that the variable exponent Sobolev capacity is subadditive for variable exponents satisfying 1 <= p < infinity. Furthermore, we show that if the exponent is log-Holder continuous, then the functions of the variable exponent Sobolev spaces have Lebesgue points quasieverywhere and they have quasicontinuous representatives also in the case p(-) = 1. To gain these results we develop methods that are not reliant on reflexivity or maximal function arguments. (C) 2013 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2013_08_063.pdf 643KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次