期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:415
Liouville type results and a maximum principle for non-linear differential operators on the Heisenberg group
Article
Brandolini, Luca1  Magliaro, Marco1 
[1] Univ Bergamo, Dipartimento Ingn, I-24044 Dalmine, BG, Italy
关键词: Lionville theorem;    Keller-Osserman;    Heisenberg group;    Non-linear differential inequalities;   
DOI  :  10.1016/j.jmaa.2014.01.087
来源: Elsevier
PDF
【 摘 要 】

We prove Liouville type results for non-negative solutions of the differential inequality Delta(phi)u >= f(u)l(vertical bar del(0)u vertical bar) on the Heisenberg group under a generalized Keller-Osserman condition. The operator Delta(phi)u is the phi-Laplacian defined by div(0)(vertical bar del(0)u vertical bar(-1)phi(vertical bar del(0)u vertical bar)del(0)u) and phi, f and l satisfy mild structural conditions. In particular, l is allowed to vanish at the origin. A key tool that can be of independent interest is a strong maximum principle for solutions of such differential inequality. (C) 2014 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_01_087.pdf 425KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次