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We prove Liouville type results for non-negative solutions of the differential
inequality Δϕu � f(u)�(|∇0u|) on the Heisenberg group under a generalized
Keller–Osserman condition. The operator Δϕu is the ϕ-Laplacian defined by
div0(|∇0u|−1ϕ(|∇0u|)∇0u) and ϕ, f and � satisfy mild structural conditions. In
particular, � is allowed to vanish at the origin. A key tool that can be of independent
interest is a strong maximum principle for solutions of such differential inequality.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Liouville type theorems for non-linear differential operators on Carnot groups have been considered by
many authors in the last twenty years. Most of the results are related to the so-called non-coercive case
such as, for example, the Yamabe equation. See e.g. [14,1,5,3,7,8] and the references therein. The coercive
case has been considered only recently by [7,8,17,4].

In this paper we consider the non-linear differential operator on the Heisenberg group

Δϕu = div0

(
ϕ(|∇0u|)
|∇0u|

∇0u

)

where div0 and ∇0 denote the horizontal divergence and the horizontal gradient respectively (see later for
the relevant definitions). Under suitable assumptions we will show that non-negative entire solutions of the
differential inequality

Δϕu � f(u)�
(
|∇0u|

)
(1)
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are constant. Similar results have been proved also in [17] and [4] under the quite restrictive assumption that
the gradient term in the RHS be bounded away from zero. The method used in [17] and [4] and also in this
paper has its origins in the techniques introduced by Keller in [16] and Osserman in [19] for the standard
Laplacian in Rn and it is essentially based on the “explicit” construction of a radial supersolution that blows
up in finite time and on a comparison argument. When one tries to adapt this argument to Carnot groups,
further difficulties arise. In particular, a very technical and tricky point in the comparison argument requires
that the gradient of a radial supersolution and the gradient of the solution do not vanish at the same point.
In the Euclidean case this is automatic since the gradient of the Euclidean distance never vanishes. In the
setting of Carnot groups, however, this is no longer true since the horizontal gradient of the distance may
vanish. This difficulty was overcome in [4] assuming �(0) > 0 whereas in [17] Theorem 1.1 is not correctly
stated. In this paper we perform a deep analysis of the set where the horizontal gradient of the solution
may vanish in order to avoid such a strong assumption. Among the tools we use is a maximum principle for
non-negative solutions of (1), valid under mild assumptions on ϕ, f , � that can be of independent interest.
See Section 4 for a comparison with previous similar results.

For a detailed analysis of existence and non-existence of positive solutions of equations of the kind (1)
under various assumptions on the gradient term � in the Euclidean setting we refer the reader to [11].

Let Hm be the Heisenberg group, i.e. the Lie group with underlying manifold Cm × R � R2m+1 and
group structure defined by

(z, t) ·
(
z′, t′

)
=

(
z + z′, t + t′ + 2 Im

(
z · z′

))

and set

Xj = ∂

∂xj
+ 2yj

∂

∂t
, Yj = ∂

∂yj
− 2xj

∂

∂t
, T = ∂

∂t
,

where zj = xj + iyj , for j = 1, . . . ,m. The vector fields {Xj , Yj} are left-invariant and their linear span is
called the horizontal bundle of Hm. Since

[Xj , Yk] = −4δjkT,

Hörmander’s condition is satisfied and the canonical sub-Laplacian, defined by

ΔHm =
m∑
j=1

(
X2

j + Y 2
j

)
,

is hypoelliptic by Hörmander’s theorem (see [15]). We refer the interested reader to [21] for a detailed
introduction to the Heisenberg group. See also the book [2] for an in-depth treatment of general Carnot
groups and sub-Laplacians.

A distinguished homogeneous norm can be defined, through the fundamental solution Γ of the sub-
Laplacian, by

‖q‖ =
∥∥(z, t)

∥∥ = Γ (z, t) 1
2m =

(
|z|4 + t2

) 1
4 .

This norm is homogeneous of degree 1 with respect to the natural dilations δλ : (z, t) �→ (λz, λ2t), λ > 0
and gives rise to the Korányi distance, defined by

d
(
q, q′

)
=

∥∥q−1 · q′
∥∥, q, q′ ∈ Hm.
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In addition to the Korányi distance, we shall equip the Heisenberg group with two more distance functions:
the Euclidean distance and the metric d∞ induced by the homogeneous norm

∣∣(z, t)∣∣∞ = max
{
|z|, |t|

1
2
}
.

The latter metric is trivially homogeneous of degree 1 with respect to the dilations δλ and, as we shall see,
it turns out to be a somewhat natural choice for what concerns the Hausdorff measure and dimension of
hypersurfaces in the Heisenberg group. By virtue of this fact, all the Hausdorff measures and dimensions on
Hm will be meant with respect to the above metric unless otherwise specified. When both metrics are taken
into consideration, we denote by dimE (resp. dim∞) the Hausdorff dimension with respect to the Euclidean
metric (resp. the metric d∞).

If Ω ⊆ Hm is open and u : Ω → R, we define the horizontal gradient of u as the horizontal vector field

∇0u =
m∑
j=1

(Xju)Xj + (Yju)Yj

and we say that u ∈ C1
H(Ω) if its horizontal gradient is defined and continuous in Ω (see [12, Section 5] for

further details). For k ∈ N we likewise define the classes Ck
H(Ω).

For horizontal vector fields W =
∑

(wjXj + w̃jYj) and Z =
∑

(zjXj + z̃jYj) we define

W · Z =
m∑
j=1

wjzj + w̃j z̃j

and

div0 W =
m∑
j=1

Xj(wj) + Yj(w̃j),

so that, by definition,

|∇0u|2 = ∇0u · ∇0u

and

ΔHmu = div0 ∇0u.

In what follows, we will use radial functions on the Heisenberg group defined by means of the Korányi
distance d. As we have already observed, an unpleasant fact about d is that its horizontal gradient vanishes
over the line z = 0. Indeed,

∣∣∇0d(z, t)
∣∣ = |z|

d(z, t) .

2. Definitions and assumptions

In this paper we will consider the inequality

Δϕu � f(u)�
(
|∇0u|

)
(2)

where Δϕ is the ϕ-Laplace operator, defined by
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Δϕu = div0

(
ϕ(|∇0u|)
|∇0u|

∇0u

)
,

with ϕ satisfying the following structural conditions:

{
ϕ ∈ C0([0,+∞)

)
∩ C1((0,+∞)

)
, ϕ(0) = 0,

ϕ′ > 0 on (0,+∞).
(3)

The ϕ-Laplace operator is a non-linear operator that generalizes the well-known p-Laplace operator, defined,
for p > 1, as

Δpu = div0
(
|∇0u|p−2∇0u

)
.

Both these operators are straightforward generalizations of their equivalents in the Euclidean setting and
have recently been studied in the context of the Heisenberg group and, more in general, of Carnot groups
(see e.g. [4] and the references therein).

The functions f and � on the RHS of (2) are required to satisfy the following structural conditions:

{
f ∈ C0([0,+∞)

)
, f > 0 on (0,+∞);

f is increasing on [0,+∞);
(4)

{
� ∈ C0([0,+∞)

)
, � > 0 on (0,+∞);

� is B-monotone non-decreasing on [0,+∞).
(5)

We recall that � is said to be B-monotone non-decreasing on [0,+∞) if, for some B � 1,

sup
s∈[0,t]

�(s) � B�(t), ∀t ∈ [0,+∞).

Clearly, if � is monotone non-decreasing on [0,+∞), then it is 1-monotone non-decreasing on the same set.
We stress that conditions (5) do allow � to vanish at the origin, while this is not the case in [17] and [4].

We will prove that, under the above structural conditions and a few more assumptions on ϕ and �,
inequality (2) has no non-negative, non-constant, entire solutions if and only if ϕ, f and � satisfy a certain
request of integrability at infinity known as the Keller–Osserman condition.

First of all, let us establish that, by an entire solution to inequality (2), we mean a function u : Hm → R

such that u ∈ C1
H(Hm) and u satisfies the inequality in the weak sense, that is, for every ζ ∈ C∞

0 (Hm),
ζ � 0,

−
∫

R2m+1

|∇0u|−1
ϕ
(
|∇0u|

)
∇0u · ∇0ζ �

∫
R2m+1

f(u)l
(
|∇0u|

)
ζ.

In order to express the generalized Keller–Osserman condition, from now on we shall assume that

tϕ′(t)
�(t) ∈ L1(0+) \ L1(+∞) (6)

and

lim
+

ϕ(t) = 0. (7)

t→0 �(t)
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Note that often (e.g. in the case of the p-Laplacian) the latter condition directly assures integrability at
0+ in the former. We define

K(t) =
t∫

0

sϕ′(s)
�(s) ds; (8)

observe that K : [0,+∞) → [0,+∞) is a C1-diffeomorphism with

K ′(t) = tϕ′(t)
�(t) > 0 for t > 0,

thus the existence of the increasing inverse K−1 : [0,+∞) → [0,+∞). Finally we set

F (t) =
t∫

0

f(s) ds.

Definition 2.1. The generalized Keller–Osserman condition for inequality

Δϕu � f(u)�
(
|∇0u|

)

is the request:

1
K−1(F (t)) ∈ L1(+∞). (9)

In order to deal with the fact that |∇0d| is not constant and vanishes on a line, we need to assume one
further request binding ϕ and � together, i.e. there exists C � 1 such that

s2ϕ′(st)
�(st) � C

ϕ′(t)
�(t) , ∀s ∈ [0, 1], t ∈ [0,+∞). (10)

We stress that this is a mild requirement and, since it replaces the more demanding set of homogeneity
assumptions present in both [17] and [4], it allows to improve the Liouville-type result of [17], which can now
be stated for a wider class of differential operators. Nonetheless, it should be mentioned that the pairing of
(10) and the B-monotonicity of � does affect the class of admissible functions ϕ, indeed the two conditions
combined together imply that

s2ϕ′(st) � BCϕ′(t)

for every s ∈ [0, 1] and for every t ∈ [0,+∞), which in turn implies that ϕ′ must be bounded below by t−2

for large t.
We also observe that (10) does not automatically imply the integrability at 0+ in (6). For instance if

ϕ(t) = tp−1 and �(t) = tp, then (10) is satisfied, but tϕ′(t)
�(t) /∈ L1(0+).

Under the previous assumptions, we shall prove that, if the Keller–Osserman condition is satisfied, in-
equality (2) has no non-constant, non-negative entire solutions that are C1

H on the whole Hm and C2
H on

Hm except for a vertical line (see Theorem 5.1). Moreover, the result is essentially sharp in the following
sense: under the structural conditions (3), (4), (5), (7), (10) and a slightly stronger version of (6), if the
Keller–Osserman condition (9) is not satisfied, then (2) admits non-negative, non-constant entire solutions
of class C1

H on the whole Hm and C2
H on Hm save for a vertical line, as shown in Theorem 6.1.
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In order to clarify the meaning of the assumptions stated above, we shall briefly focus on the special
case when the functions involved are powers, and see what these assumptions translate into. To this end,
let p > 1 and θ � 0 and set ϕ(t) = tp−1 and �(t) = tθ, i.e. the differential inequality (2) becomes

Δpu � f(u)|∇0u|θ.

It is immediate to see that assumptions (3) and (5) are always satisfied for these choices of ϕ and �, while
(6) and (7) become the request θ < p − 1. The Keller–Osserman condition (9) translates into the request
that

[
F (t)

]− 1
p−θ ∈ L1(+∞),

which generalizes the usual Keller–Osserman condition for the p-Laplacian (see, for instance, [18]). Finally,
assumption (10) becomes θ � p, so that ultimately, in the very special case of powers, the whole set of
assumptions (save for the Keller–Osserman condition) is satisfied for 0 � θ < p− 1.

It is worth mentioning that, in [9], the authors consider Liouville-type results for coercive elliptic equations
and inequalities in the Euclidean space and, in doing so, they find a condition for the non-existence of
solutions that resembles (and actually slightly improves) the one obtained above for the special case of the
p-Laplacian.

We end the section remarking that there are many examples of differential operators other than the
p-Laplacian that can be considered in this setting. Such operators include for instance generalizations of
the mean curvature operator of the kind

Lu = div0

(
|∇0u|p−1

(1 + |∇0u|2)q/2
∇0u

)

with p > 1 and q < p (see e.g. [7] or [18]), operators of the kind

Lu = div0
((
|∇0u|p−2 + |∇0u|q−2)∇0u

)

with p, q > 1 (see e.g. [20]) or

Lu = div0

(
sinh(|∇0u|)

|∇0u|
∇0u

)

that for suitable choices of the gradient term � satisfy the structural conditions (3), (5), (6), (7) and (10).

3. Radial supersolutions

A key tool in the proof of the Liouville-type theorem is the construction of an appropriate radial super-
solution, i.e. a function v = α ◦ d satisfying

Δϕv � f(v)�
(
|∇0v|

)

where d(p) = dq(p) = d(p, q) denotes the distance from a fixed point q. Keeping in mind the definition of
the ϕ-Laplacian and the properties of the horizontal divergence, such as the following

div0(fW ) = f div0 W + ∇0f ·W,

together with the fact that
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ΔHmd = |∇0d|2
2m + 1

d
,

some computation yields the following expression for the ϕ-Laplacian of a radial function v:

Δϕv = ϕ′(α′|∇0d|
)
α′′|∇0d|2 + ϕ

(
α′|∇0d|

)
|∇0d|

2m + 1
d

(11)

where, for ease of notation, we have assumed α increasing. As we shall see, this is not restrictive for our
purposes.

Lemma 3.1. Let σ ∈ (0, 1]; then the generalized Keller–Osserman condition (9) implies

1
K−1(σF (t)) ∈ L1(+∞). (12)

The proof of this lemma is achieved through a change of variable. For the details, we refer the reader
to [17].

We pass now to the construction of radial supersolutions of (2). The next proposition will be used to
prove our Liouville-type result in H1, while the subsequent proposition will be needed in Hm for m > 1.

Proposition 3.2. Assume the validity of (3), (4), (5), (6), (7) and (10). Fix 0 < t0 < t1, 0 < ε < η < A,
where A may possibly be equal to +∞ if (9) holds. Let h1, h2 : [t0,+∞) → R be Cβ functions and let E be
a subset of R such that dim(E) < β, for some β � 1. Then there exist T > t1 and a strictly increasing and
convex function α ∈ C2([t0, T )) such that for every q ∈ H1 the radial function v = α ◦ dq satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δϕv � f(v)�
(
|∇0v|

)
on BT (q) \Bt0(q),

v = ε on ∂Bt0(q),
v = A on ∂BT (q),
ε � v � η on Bt1(q) \Bt0(q).

Moreover, for every t ∈ E ∩ [t0, T ],

α′(t 1
2
)

= h1(t) and α′(t 1

2
)

= h2(t). (13)

Proposition 3.3. Let m > 1. Assume the validity of (3), (4), (5), (6), (7) and (10). Fix 0 < t0 < t1,
0 < ε < η < A, where A may possibly be equal to +∞ if (9) holds. Let h1, h2 : [t0,+∞) → R and let E

be an at most countable subset of R. Then there exist T > t1 and a strictly increasing and convex function
α ∈ C2([t0, T )) such that for every q ∈ Hm the same conclusions of Proposition 3.2 hold.

Proof of Propositions 3.2 and 3.3. Consider σ ∈ (0, 1] to be determined later and let Tσ > t0 be such that

Tσ − t0 =
A∫
ε

ds

K−1(σF (s)) .

Note that, when A = +∞ and (9) holds, the RHS is well defined by Lemma 3.1. Moreover, since the RHS
diverges as σ → 0+, up to choosing σ sufficiently small we can shift Tσ in such a way that Tσ > t1. We
implicitly define the C2 function ασ(t) by requiring

Tσ − t =
A∫

ds

K−1(σF (s)) on [t0, Tσ).

ασ(t)
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We observe that, by construction, ασ(t0) = ε and, since K−1 > 0, ασ(t) ↑ A as t → Tσ. A first differentiation
yields

α′
σ

K−1(σF (ασ)) = 1,

hence ασ is monotone increasing and σF (ασ) = K(α′
σ). Differentiating once more we deduce

σf(ασ)α′
σ = K ′(α′

σ

)
α′′
σ = α′

σϕ
′(α′

σ)
�(α′

σ) α′′
σ.

Canceling α′
σ throughout, we obtain

ϕ′(α′
σ

)
α′′
σ = σf(ασ)�

(
α′
σ

)
. (14)

Now we set v = ασ ◦ dq and observe that v is a C2
H radial function on BTσ

\ Bt0 whose ϕ-Laplacian
has the expression (11). We will show that we can find a value of σ (independent of q) such that v is a
supersolution, using the properties of ασ that we discussed above and (10). In the following computation
we omit the subscript σ in ασ and rename |∇0d| = s for ease of notation. By (11)

Δϕv

f(v)�(|∇0v|)
= s2ϕ′(sα′)α′′

f(α)�(sα′) + sϕ(sα′)
f(α)�(sα′)

2m + 1
d

. (15)

We can estimate the first term on the RHS of (15) using (10) and (14):

s2ϕ′(sα′)α′′

f(α)�(sα′) � C
ϕ′(α′)α′′

f(α)�(α′) = Cσ.

As for the second term, we first observe that

ϕ
(
sα′) = ϕ

(
sα′(t0)

)
+

d∫
t0

[
ϕ
(
sα′(u)

)]′
du = ϕ

(
sα′(t0)

)
+

d∫
t0

sϕ′(sα′(u)
)
α′′(u) du,

so that

sϕ(sα′)
f(α)�(sα′)

2m + 1
d

= 2m + 1
d

(
sϕ(sα′(t0))
f(α)�(sα′) +

∫ d

t0
s2ϕ′(sα′(u))α′′(u) du

f(α)�(sα′)

)
.

Now the first term of this can be estimated using (4) and (5) by

2m + 1
d

sϕ(sα′(t0))
f(α)�(sα′) � 2m + 1

t0

Bϕ(sα′(t0))
f(α(t0))�(sα′(t0))

and since K(0) = 0, ασ(t0) = ε and α′
σ(t0) = K−1(σF (ε)) → 0 as σ → 0, we can use (7) to deduce that

this term goes to 0 as σ → 0. As for the last term, using (10) we have that

2m + 1
d

∫ d

t0
s2ϕ′(sα′(u))α′′(u) du

f(α)�(sα′) � 2m + 1
f(α)�(sα′)d

d∫
t0

Cϕ′(α′(u)
)
α′′(u)�(sα

′(u))
�(α′(u)) du

= 2m + 1
f(α)�(sα′)d

d∫
Cσf

(
α(u)

)
�
(
sα′(u)

)
du
t0
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� 2m + 1
f(α)�(sα′)d (d− t0)Cσf(α)B�

(
sα′)

� σ(2m + 1)CB.

Putting these estimates together, we find that

Δϕv � C̃

{
σ + 2m + 1

t0

Bϕ(α′
σ(t0)|∇0d|)

f(ασ(t0))�(α′
σ(t0)|∇0d|)

}
f(v)�

(
|∇0v|

)

and the whole bracket tends to 0 as σ → 0 whence, for every σ in a neighborhood of 0, the radial function
v is indeed a supersolution.

We still need to show that, possibly with a further reduction of σ, ασ(t1) � η. From the trivial identity

A∫
ασ(t1)

ds

K−1(σF (s)) = Tσ − t1 = (Tσ − t0) + (t0 − t1) =
A∫
ε

ds

K−1(σF (s)) + (t0 − t1)

we deduce

ασ(t1)∫
ε

ds

K−1(σF (s)) = t1 − t0.

It suffices to choose σ such that
∫ η

ε
ds

K−1(σF (s)) > t1 − t0; then obviously ασ(t1) < η.
Now, to prove Proposition 3.2, the only thing left to show is that we can choose a value of σ such that

the function ασ satisfies all of the above requirements and the condition

α′
σ

(
t

1
2
)

= h1(t) and α′

σ

(
t

1
2
)

= h2(t)

for every t ∈ E∩ [t0, Tσ]. Since the other requirements are satisfied for σ in a sufficiently small neighborhood
of 0, it suffices to show that there exists at least a sequence of values of σ converging to 0 for which the
latter condition holds for every t ∈ E. To this end, we observe that if σ1 < σ2, then

1
K−1(σ1F (s)) >

1
K−1(σ2F (s))

and, since

ασ1 (t)∫
ε

ds

K−1(σ1F (s)) =
ασ2 (t)∫
ε

ds

K−1(σ2F (s)) = t− t0,

this yields ασ1 < ασ2 . Since moreover

α′
σ(t) = K−1(σF (

ασ(t)
))
,

we have that

α′
σ1

(t) = K−1(σ1F
(
ασ1(t)

))
< K−1(σ2F

(
ασ2(t)

))
= α′

σ2
(t),

that is, α′
σ is strictly increasing with respect to σ.
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Because of this, we can deduce that, for every fixed t, the equation

α′
σ

(
t

1
2
)

= hi(t), (16)

where we have generically denoted by hi the functions h1 or h2, can be satisfied for at most one value of σ.
We define a map Φi that associates, to every t ∈ E, the only value of σ (when it exists) such that (16) holds.
We shall prove that the map Φi is of class Cβ ; in this way, since the image of an s-dimensional set under a
Cβ map has dimension at most s

β (see Proposition A.1 in Appendix A for the details), we can deduce that
the set

Σi =
{
σ: ∃t ∈ E such that α′

σ

(
t

1
2
)

= hi(t)
}

has Hausdorff dimension strictly less than 1 and therefore has Lebesgue measure 0. The same is obviously
also true for

Σ1 ∪Σ2 =
{
σ: ∃t ∈ E such that α′

σ

(
t

1
2
)

= h1(t) or α′
σ

(
t

1
2
)

= h2(t)
}
,

which thus cannot contain any open interval.
Now, to show that Φi is Hölder continuous, define

G(σ, u, t) =
A∫

u

ds

K−1(σF (s)) − (Tσ − t)

and observe that

∂G

∂u
= −1

K−1(σF (u)) 
= 0,

so that G defines an implicit function u = ασ(t) which is at least of class C2 with respect to σ and t. In
particular, α′

σ is of class C1 and, as we have seen above, it is strictly increasing with respect to σ. By virtue
of this, we can also apply the implicit function theorem to the equality

α′
σ

(
t

1
2
)

= u

and solve the latter equality for σ:

σ = g(u, t)

for some function g which is of class C1 with respect to u and even t, provided t stays away from 0.
Therefore, the function Φi, which is defined by the equality

α′
σ

(
t

1
2
)

= hi(t),

can now be made explicit as follows

Φi(t) = g
(
hi(t), t

)
,

which is trivially of class Cβ because of the fact that hi is Cβ by assumption and provided that t stays
away from 0, which is not restrictive in our case.



696 L. Brandolini, M. Magliaro / J. Math. Anal. Appl. 415 (2014) 686–712
Therefore, fixing a value for σ which satisfies all the above requirements and renaming T and α the
corresponding Tσ and ασ, we have proved the claim.

To complete the proof of Proposition 3.3, define again the map Φi as the map that associates to a point
t ∈ E the only value of σ (if it exists) such that

α′
σ

(
t

1
2
)

= hi(t)

and observe that the set of values of σ that we want to avoid is just the union of the images of Φ1 and of Φ2,
which is at most countable. Therefore, in every neighborhood of 0 we can always find uncountably many
values of σ that satisfy the required condition. Picking one of these values sufficiently close to 0 gives rise
to the required value of T and function α, and the claim is proved. �

In the next propositions we shall construct a supersolution to (2) which will be needed in the proof of
the maximum principle (Theorem 4.3), in the case of H1 and Hm for m > 1 respectively.

Proposition 3.4. Assume the validity of (3), (4), (5), (7) and fix 0 < t0 < t1, 0 < k0 < k1. Let E be a subset
of [t0, t1] such that dim(E) < β and let h1, h2 : [t0, t1] → R be Cβ functions for some β � 1. Then there
exists σ0 > 0 such that for a.e. value of 0 < σ � σ0 and for every q ∈ H1, the function v = α ◦ dq, with
α(t) = σ(t− t1) + k1 satisfies

⎧⎪⎨
⎪⎩

Δϕv � f(v)�
(
|∇0v|

)
in Bt1(q) \Bt0(q),

v � k0 on ∂Bt0(q),
v = k1 on ∂Bt1(q)

and, for every t ∈ E,

α′(t 1
2
)

= h1(t) and α′(t 1

2
)

= h2(t). (17)

Proposition 3.5. Let m > 1. Assume the validity of (3), (4), (5), (7) and fix 0 < t0 < t1, 0 < k0 < k1. Let
E be an at most countable subset of [t0, t1] and let h1, h2 : [t0, t1] → R. Then there exists σ0 > 0 such that
for every 0 < σ � σ0, save for at most a countable subset and for every q ∈ Hm the same conclusions of
Proposition 3.4 hold.

Proof of Propositions 3.4 and 3.5. Consider σ ∈ (0, 1] to be determined later and set

ασ(t) = σ(t− t1) + k1.

Then obviously ασ(t1) = k1 for every σ, while ασ(t0) � k0 for σ � k1−k0
t1−t0

.
Since α′

σ = σ and α′′
σ = 0, having set v = ασ ◦ d, we have that

Δϕv = ϕ′(α′
σ

)
α′′
σ|∇0d|2 + ϕ

(
α′
σ|∇0d|

)
|∇0d|

2m + 1
d

= ϕ
(
σ|∇0d|

)
|∇0d|

2m + 1
d

.

Setting |∇0d| = s for ease of notation, we need to show that

ϕ(σs)s2m + 1 � f
(
σ(d− t1) + k1

)
�(σs),
d
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that is

ϕ(σs)s
�(σs) � d

2m + 1f
(
σ(d− t1) + k1

)
.

But, using (7), we know that for sufficiently small σ,

ϕ(σs)
�(σs) � t0

2m + 1f(k0).

Therefore we have

ϕ(σs)s
�(σs) � ϕ(σs)

�(σs) � t0
2m + 1f(k0) � d

2m + 1f
(
σ(d− t1) + k1

)
,

showing that v is a supersolution.
Again, the only thing left to show is that we can choose a value of σ such that the function ασ satisfies

all of the above requirements and the conditions

α′
σ

(
t

1
2
)

= h1(t) and α′

σ

(
t

1
2
)

= h2(t).

To this end we observe that, with our choice of ασ, condition

α′
σ

(
t

1
2
)

= h1(t) or α′
σ

(
t

1
2
)

= h2(t) (18)

becomes

σ = h1(t) or σ = h2(t)

and, since the other requests on ασ are satisfied for every σ in a sufficiently small neighborhood of 0,
what we need to show is that the union of the images of the set E under the maps hi cannot contain a
whole neighborhood of 0. But this is certainly true under the assumptions of both Proposition 3.4 and
Proposition 3.5, indeed in the former case h1 and h2 are, by assumption, maps of class Cβ and therefore

dim
(
hi(E)

)
� 1

β
dimE < 1

(see Proposition A.1 in Appendix A for the details). Hence the set of values of σ for which (18) holds for
every t ∈ E has Hausdorff dimension strictly less than 1 and therefore is a null set with respect to the
Lebesgue measure. In particular, it cannot contain any interval.

The latter case is even simpler, since we have that the set of inadmissible values of σ is at most countable,
which trivially implies the claim.

Thus we can choose a value of σ that satisfies all of the previous requests and such that (18) cannot be
satisfied for any value of t ∈ E. Having fixed such a value of σ, we rename α the corresponding ασ and the
claim is proved. �
4. Maximum principle

In this section we shall prove a maximum principle for non-negative solutions of (2). To prove such a
result we will be interested in the set of non-stationary points where the horizontal gradient vanishes. In
the next proposition we prove that such a set is small in a suitable sense.
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Proposition 4.1. Let u ∈ C2
H(Ω) and consider the set

C =
{
p ∈ Ω: Xju(p) = Yju(p) = 0, ∀j = 1, . . . ,m, Tu(p) 
= 0

}
,

and for z0 ∈ Cm define Ez0 = {(z0, t) ∈ C}. If m = 1, then for a.e. z0 ∈ C, Ez0 has Hausdorff dimension,
with respect to the Euclidean metric,

dimE(Ez0) � 1
2 .

If m > 1, then for a.e. z0 ∈ Cm, Ez0 is at most countable and discrete.

Proof. Set, for ease of notation, Zj = Xj and Zj+m = Yj for j = 1, . . . ,m. Let p ∈ C and consider the
matrix

A(p) =

⎡
⎢⎣

Z1Z1u(p) · · · Z1Z2mu(p)
...

. . .
...

Z2mZ1u(p) · · · Z2mZ1u(p)

⎤
⎥⎦ .

Observe that due to the commutation relations

A(p) −A(p)T = −4Tu(p)
[

0 Im
−Im 0

]

where AT denotes the transpose matrix and Im the identity matrix. In particular since Tu(p) 
= 0, A(p) −
A(p)T is a 2m non-singular matrix, so that

2m = rk
(
A(p) −A(p)T

)
� rk

(
A(p)

)
+ rk

(
A(p)T

)
= 2 rk

(
A(p)

)

hence rk(A(p)) � m. It follows that for every p ∈ C there exist indices j1, j2, . . . , jm such that the horizontal
vector fields ∇0Zjku are linearly independent. Since the functions ZiZju are continuous, this extends to a
neighborhood U of p. Let

C0 =
{
p ∈ U : Zjku(p) = 0 for k = 1, . . . ,m

}
.

Since in U , ∇0Zj1u∧· · ·∧∇0Zjmu does not vanish, C0 is an m-codimensional H-regular surface according
to the definition given in [13] and by Corollary 4.4 therein it is Hm+2-measurable and has Hausdorff
dimension equal to m + 2. Thus C is also Hm+2-measurable (since it is an Fσ set) and dim(C) � m + 2.

Moreover, by Theorem 4.1 in [13] and since the second derivatives of u are continuous on Ω, if BR is any
closed ball of radius R in Hm, then we have

Hm+2(C ∩BR) < +∞.

Let Z be the center of Hm, that is

Z =
{
(0, t) ∈ Hm: t ∈ R

}
,

and observe that the quotient group Hm/Z is just Cm and that the projection onto the quotient
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π : Hm → Cm,

(z, t) �→ z,

is trivially a Lipschitz map.
Assume now m � 2. Applying Eilenberg’s inequality (see Theorem 2.10.25 of [10] or Theorem 13.3.1

of [6]), we find that

∗∫
Cm

H0(C ∩BR ∩ π−1(z)
)
dH2m(z) � (Lipπ)2mH2m(C ∩BR),

where
∫ ∗ denotes the upper Lebesgue integral.

Since 2m � m+ 2, the RHS is finite and we can deduce that the integrand function on the LHS must be
finite for a.e. z ∈ Cm. But H0 is just the counting measure, so the set {(z0, t) ∈ C ∩ BR} has to be finite
for a.e. z0 ∈ Cm. Set ER

z0 = Ez0 ∩BR for R > 0 and observe that

H2m
( ⋃

n∈N

{
z0 ∈ Cm: H0(En

z0

)
= +∞

})
= 0

so that for a.e. z0 ∈ Cm the set Ez0 is the union of countably many nested finite sets and is therefore at
most countable. Ez0 is also trivially discrete because if it had a limit point, this would eventually fall into
one of the En

z0 , which is absurd.
We now assume m = 1 and apply again Eilenberg’s inequality to get

∗∫
C

H1(C ∩BR ∩ π−1(z)
)
dH2(z) � ω1ω2

ω3
(Lipπ)2H3(C ∩BR),

where ωk is the volume of the Euclidean unit ball in Rk.
Since the RHS is finite, we deduce that the integrand function on the LHS must be finite for a.e. z ∈ C,

that is, the set {(z0, t) ∈ C ∩BR} has finite H1-measure for a.e. z0 ∈ C. Set ER
z0 = Ez0 ∩BR for R > 0 and

observe that

H2
( ⋃

n∈N

{
z0 ∈ C: H1(En

z0

)
= +∞

})
= 0,

so we can conclude that, for a.e. z0 ∈ C, H1(ER
z0) < +∞ for every R > 0.

Fix now such a value of z0 and denote by dimE (resp. dim∞) the Hausdorff dimension with respect
to the Euclidean metric (resp. the metric d∞) in H1. We want to prove that, if H1(ER

z0) < +∞, then
dimE(ER

z0) � 1
2 . To this end we recall that the image of an s-dimensional set under a Cα map has dimension

at most s
α (see Proposition A.1 in Appendix A for the details), a result that we apply in the following way:

consider R equipped with two distinct metrics: the usual Euclidean metric, denoted dE and the metric
d∞(t1, t2) = |t1 − t2|

1
2 and observe that the map (z0, t) �→ t realizes an isometry between E and a subset

of R, once we equip them with the appropriate metrics. Indeed

d∞
(
(z0, t1), (z0, t2)

)
= max

{
|z0 − z0|, |t1 − t2|

1
2
}

= d∞(t1, t2).

We also note that the identity map id : (R, d∞) → (R, dE) is trivially of Hölder class Cα with α = 2, indeed

dE(t1, t2) = |t1 − t2| =
(
d∞(t1, t2)

)2
.
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If H1(ER
z0) < +∞, then by definition dim∞(ER

z0) � 1 and since this is true for every R > 0 and Ez0 =⋃
n∈N En

z0 , then

dim∞(Ez0) = dim∞

( ⋃
n∈N

En
z0

)
= sup

n∈N

dim∞
(
En

z0

)
� 1.

Hence, applying Proposition A.1, we deduce that

dimE(Ez0) � 1
2 dim∞(Ez0) � 1

2 ,

which proves the claim. �
The proof of the maximum principle requires a comparison argument that, for the sake of completeness,

we state below.

Proposition 4.2 (Comparison theorem). Let Ω ⊂⊂ Hm be a relatively compact domain. Let u, v ∈ C0(Ω) ∩
C1

H(Ω) satisfy
{

Δϕu � Δϕv on Ω,

u � v on ∂Ω.
(19)

Then u � v on Ω.

For the proof of this proposition we refer the reader to [17]. Note that in [17] the domain Ω is assumed
to have C1 boundary, however a careful reading of the proof shows that this assumption is not necessary.

In the next theorem we prove a strong maximum principle for non-negative solutions of (2). Similar
results were proved in [17] and [4]. In particular, in [17] the authors proved a maximum principle on the
Heisenberg group for ϕ-subharmonic functions under quite restrictive conditions on ϕ. As for [4], in that
paper a maximum principle was proved for solutions of (2) on Carnot groups. The assumptions on ϕ and �,
though, are much more restrictive than those in the present paper. In particular, the assumptions on ϕ

imply that Δϕ reduces essentially to a p-Laplacian.
Let Ω ⊆ H1 be an open set, denote by π : H1 → C the natural projection and fix 0 < β � 1. We define

the functional space

Mβ(Ω) =
{
u ∈ C2

H(Ω): for a.e. z0 ∈ C ∩ π(Ω), Tu(z0, ·) ∈ Cβ(Ωz0)
}
, (20)

where Ωz0 = {t ∈ R: (z0, t) ∈ Ω} and, for U ⊂ R, Cβ(U) denotes the space of Hölder continuous functions
on U with respect to the Euclidean metric.

Theorem 4.3 (Maximum principle). Assume the validity of (3), (4), (5) and (7). Let Ω ⊂ Hm be a domain
and let D = {(z̃, t): t ∈ R} for some z̃ ∈ Cm and, for m � 2, let u ∈ C0(Ω) ∩ C1

H(Ω) ∩ C2
H(Ω \D) while,

for m = 1, let u ∈ C0(Ω)∩C1
H(Ω) ∩Mβ(Ω \D) for some 1

2 < β � 1. Assume u is a non-negative solution
of

Δϕu � f(u)�
(
|∇0u|

)
in Ω (21)

and let u∗ = supΩ u. If u(qM ) = u∗ for some qM ∈ Ω, then u ≡ u∗.

Proof. By contradiction, assume there exist a solution u of (21) and qM = (zM , tM ) ∈ Ω such that
u(qM ) = u∗, but u 
≡ u∗.
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Set Γ = {q ∈ Ω: u(q) = u∗} and assume first that Γ ⊆ D. Let r0 = d(qM , ∂Ω) and let

S =
{
q ∈ Hm: d(q,D) � 1

4r0
}
.

We apply Proposition 4.1 to the function u on the set Ω \ S where the assumptions on the regularity of u
are satisfied.

Let q′ = (z0, tM ) /∈ S such that d(q′, qM ) < r0
2 (hence q′ ∈ Ω) and such that z0 satisfies the condition

in the thesis of Proposition 4.1 and (when m = 1) such that Tu(z0, ·) ∈ Cβ (this is possible, since the
latter two conditions are satisfied for a.e. z0 ∈ Cm). Now we construct an auxiliary function by means of
Propositions 3.4 and 3.5. Towards this aim, let R = d(q′, Γ ) and consider the annular region

ER

(
q′
)

= BR

(
q′
)
\BR/2

(
q′
)

(22)

and define a radial function v = α ◦ dq′ such that
⎧⎪⎪⎨
⎪⎪⎩

Δϕv � f(v)�
(
|∇0v|

)
in ER

(
q′
)
,

v � max
∂BR/2(q′)

u on ∂BR/2
(
q′
)
,

v = u∗ on ∂BR

(
q′
)
.

(23)

We also choose E as the set Ez0 of Proposition 4.1 (which satisfies the dimensional request of Proposi-
tion 3.4). We finally choose

h1(t) = 2t 1
2Tu(z0, t + tM ) and h2(t) = −2t 1

2Tu(z0, tM − t)

and observe that, when m = 1, these functions are trivially of class Cβ , since so is Tu(z0, t) by assumption
and t

1
2 is C1 on the interval [R/2, R]. We also remark that for m > 1 the functions hi are in general only

continuous, but this is enough to apply Proposition 3.5.
We finally point out that the function α is strictly increasing on the interval [R/2, R], since it is a line of

slope σ.
Let us now assume that the maximum of u−v on ER be positive. Then it has to be internal, and therefore

there must exist p0 in the interior of ER such that u(p0) > v(p0) and ∇0u(p0) = ∇0v(p0). Since f is strictly
increasing, we deduce that

f
(
u(p0)

)
�
(∣∣∇0u(p0)

∣∣) � f
(
v(p0)

)
�
(∣∣∇0v(p0)

∣∣). (24)

But we can actually prove that, for our choice of the supersolution v, the previous inequality is strict. In
fact, the equality case in the last inequality can only be realized when |∇0u| = |∇0v| = 0 since, by definition,
� can only vanish at the origin. But ∇0v = α′∇0d and

|∇0d|2 = |z − z0|2

d2 ,

which only vanishes on the line {(z0, t): t ∈ R}, while α′ never vanishes.
We will show that, for our choice of the supersolution v, the difference u − v cannot have a stationary

point on the line {(z0, t): t ∈ R}. Indeed, if (z0, t̃) were a stationary point for u−v, then at (z0, t̃) we would
have |∇0u| = 0 and Tu = Tv. But a straightforward computation shows that

Tv(z0, t̃) = α′(|t̃− tM |
1
2
)
Td(z0, t̃) = sgn(t̃− tM )

˜ 1
2
σ,
2|t− tM |
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which in particular does not vanish, implying Tu(z0, t̃) 
= 0. In other words (z0, t̃) would be a point of the
set Ez0 , defined in the statement of Proposition 4.1, and

Tu(z0, t̃) = sgn(t̃− tM )
2|t̃− tM |

1
2
σ,

that is

σ = 2 sgn(t̃− tM )|t̃− tM |
1
2Tu(z0, t̃), (25)

which is impossible for our choice of α, both when m = 1 and when m > 1.
Now set μ = maxER

(u− v) and let Λμ be the connected component of
{
q ∈ ER: u(q) − v(q) = μ

}

containing p0. Observe that, by continuity, (24), which holds in its strict version at every point of Λμ, implies
that

Δϕu � Δϕv

on a neighborhood U of Λμ. Fix 0 < ρ < μ and let Ωρ be the connected component containing p0 of
{
q ∈ ER: u(q) > v(q) + ρ

}
.

We observe that Ωρ is a nested sequence as ρ tends to μ. We claim that if ρ is close to μ, then Ωρ ⊂ U . This
can be shown by a compactness argument such as the following: since Λμ is closed and bounded, there exists
ε > 0 such that d(U c, Λμ) � ε. Suppose, by contradiction, that there exist sequences ρn ↑ μ and {qn} such
that qn ∈ Ωρn

and qn /∈ U , therefore d(qn, Λμ) > ε. Then, we can assume that the sequence is contained in
Ωρ0 which, by construction, has compact closure; passing to a subsequence converging to some q, we have
by continuity

d(q, Λμ) � ε, (26)

but, on the other hand, (u− v)(q) = limn(u− v)(qn) � limn ρn = μ, hence q ∈ Λμ and this contradicts (26).
Therefore, d(∂Ωρ, Λμ) → 0 as ρ → μ, and the claim is proved.

Therefore, on Ωρ we have

Δϕu � Δϕv = Δϕ(v + ρ)

and u = v + ρ on ∂Ωρ which, by the comparison principle, implies that u � v + ρ on Ωρ, a contradiction
since u(p0) = v(p0) + μ. This shows that the maximum of u − v on ER has to be non-positive, that is,
u− v � 0 on ER.

Now, we point out that, while the horizontal gradient of the homogeneous norm may vanish out of the
origin, its Euclidean gradient does not, indeed

|∇d|2 = 1
d6

(
|z|6 + t2

4

)
.

In the light of this, there exists a positive constant λ > 0 such that

〈∇v,∇d〉 = α′(d)|∇d|2 � λ > 0 on ∂ER

(
q′
)
. (27)
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Going back to the function v − u, we found that it satisfies v − u � 0 on ER(q′) and v(qM ) − u(qM ) =
u∗ − u∗ = 0, so that 〈∇(v − u),∇d〉(qM ) � 0. Therefore

0 = 〈∇u,∇d〉(qM ) � 〈∇v,∇d〉(qM ) > 0, (28)

a contradiction.
This concludes the proof in the case Γ ⊆ D. Assume now that there exists qM ∈ Γ such that qM /∈ D.

Then qM has positive distance from D. Choose an open neighborhood of D, say U(D), so that Γ � U(D)
and u is not constant on Ω \ U(D). We will consider the set

Ω \ U(D)

which, from now on, we will rename simply Ω for the sake of brevity and we apply Proposition 4.1 to this
new Ω.

We now pick a point q′ ∈ Ω such that d(q′, Γ ) < d(q′, ∂Ω) (this is possible provided q′ is sufficiently
close to qM ) and such that its projection onto Cm is a point z0 that satisfies the condition in the thesis of
Proposition 4.1 and (when m = 1) such that Tu(z0, ·) ∈ Cβ (again, this is possible, since the latter two
conditions are satisfied for a.e. z0 ∈ Cm). The proof now proceeds as in the previous case. �
5. Non-existence results

In this section we prove our main result, a Liouville-type theorem for inequality (2). We recall that the
space Mβ was defined in (20).

Theorem 5.1. Let ϕ, f , � satisfy (3), (4), (5), (6), (7) and (10). Assume also the validity of the generalized
Keller–Osserman condition (9). Let D = {(z̃, t): t ∈ R} for some z̃ ∈ Cm. If u is a non-negative solution
of

Δϕu � f(u)�
(
|∇0u|

)
on Hm (29)

such that u ∈ C1
H(Hm) ∩ C2

H(Hm \D) for m > 1, or u ∈ C1(H1) ∩Mβ(H1 \D) for some 1
2 < β � 1 for

m = 1, then u is constant.

Actually, we can prove that inequality (2) does not possess any non-negative entire bounded solution
regardless of whether the Keller–Osserman condition be satisfied or not. This is stated in the next

Theorem 5.2. Let ϕ, f , � satisfy (3), (4), (5), (6), (7) and (10). Let D = {(z̃, t): t ∈ R} for some z̃ ∈ Cm.
If u is a non-negative, bounded solution of (29) such that u ∈ C1

H(Hm) ∩ C2
H(Hm \ D) for m > 1, or

u ∈ C1(H1) ∩Mβ(H1 \D) for some 1
2 < β � 1 when m = 1, then u is constant.

The proof of these theorems is based on the same ideas as in [17] and [4]: we assume by contradiction
the existence of a non-negative non-constant solution u and compare it with the supersolution v that was
constructed in Section 3. In order to be able to perform this comparison and, at the same time, avoid the
quite restrictive assumption �(0) > 0, we want to make sure that the function u − v does not attain a
maximum at a point where ∇0d vanishes. The reason of this request will become apparent in the proof of
the theorem.

Proof of Theorems 5.1 and 5.2. We first prove Theorem 5.2 under the assumptions (3), (4), (5), (6),
(7) and (10). Later on, under the additional hypothesis (9), we will also prove the constancy of possibly
unbounded solutions u of (29).
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Therefore, we denote u∗ = supu and we first assume that u∗ < +∞. We reason by contradiction and
assume u 
≡ u∗; by Theorem 4.3, u < u∗ on Hm.

For a fixed r > 0, let S = {q ∈ Hm: d(q,D) � r}. We now apply Proposition 4.1 to the set Hm \S, we fix
z0 as in the thesis of such proposition and we choose (z0, 0) as the center of the Korányi balls and distance.

Choose r0 > 0 and define

u∗
0 = sup

Br0

u < u∗.

Fix η > 0 sufficiently small such that u∗ − u∗
0 > 2η and choose q̃ ∈ Hm \ Br0 such that u(q̃) > u∗ − η.

Choose also 0 < ε < η and A in such a way that A > 2η + ε. We then set r1 = d(q̃) and, for our choice of
r0, r1, A, ε, η we construct a radial function v(q) = α(d(q)) on BT \ Br0 as in Propositions 3.2 and 3.3, so
that

⎧⎨
⎩

Δϕv � f(v)�
(
|∇0v|

)
on BT \Br0 ,

v ≡ ε on ∂Br0 ; v = A on ∂BT ,

ε � v � η on Br1 \Br0 .

We also choose E as the set Ez0 of Proposition 4.1 (which again satisfies the dimensional request of Propo-
sition 3.2 when m = 1). We finally choose

h1(t) = 2t 1
2Tu(z0, t) and h2(t) = −2t 1

2Tu(z0,−t)

and observe that, when m = 1, these functions are trivially of class Cβ . We stress that h1 and h2 are in
general only continuous for m > 1, but we will not be needing any assumptions on the Hölder continuity of
the functions hi in this case.

Using the properties of v we deduce that

u(q̃) − v(q̃) > u∗ − η − η = u∗ − 2η,

and, on ∂Br0 ,

u(q) − v(q) � u∗
0 − ε < u∗ − 2η − ε.

Since also

u(q) − v(q) � u∗ −A < u∗ − 2η − ε for q ∈ ∂BT ,

the difference u− v attains a positive maximum μ in BT \Br0 .
Let Λμ be a connected component of

{
q ∈ BT \Br0 : u(q) − v(q) = μ

}
.

Let p0 ∈ Λμ and note that u(p0) > v(p0) and |∇0u(p0)| = |∇0v(p0)|. As a consequence, since f is strictly
increasing,

f
(
u(p0)

)
�
(∣∣∇0u(p0)

∣∣) � f
(
v(p0)

)
�
(∣∣∇0v(p0)

∣∣).
But we can actually prove that, for our choice of the supersolution v, the previous inequality is strict. In
fact, the equality case in the last inequality can only be realized when |∇0u| = |∇0v| = 0 since, by definition,
� can only vanish at the origin. But ∇0v = α′∇0d and
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|∇0d|2 = |z − z0|2

d2 ,

which only vanishes on the line {(z0, t): t ∈ R}, while α′ never vanishes.
We will show that, for our choice of the supersolution v, the difference u − v cannot have a stationary

point on the line {(z0, t): t ∈ R}. Indeed, if (z0, t̃) were a stationary point for u−v, then at (z0, t̃) we would
have |∇0u| = 0 and Tu = Tv. But a straightforward computation shows that

Tv(z0, t̃) = α′(|t̃| 12 )Td(z0, t̃) = sgn (t̃)
2|t̃|

1
2
α′(|t̃| 12 ),

which in particular does not vanish, implying Tu(z0, t̃) 
= 0. In other words (z0, t̃) would be a point of the
set Ez0 , defined in the statement of Proposition 4.1, and

Tu(z0, t̃) = sgn(t̃)
2|t̃|

1
2
α′(|t̃| 12 ),

that is

α′(|t̃| 12 ) = 2 sgn(t̃)|t̃|
1
2Tu(z0, t̃),

which is impossible for our choice of α.
By virtue of these considerations, we can conclude that

f
(
u(p0)

)
�
(∣∣∇0u(p0)

∣∣) > f
(
v(p0)

)
�
(∣∣∇0v(p0)

∣∣)

which, by continuity, in turn assures that

Δϕu � Δϕv

on an open set V ⊃ Λμ.
Arguing as in the final part of the proof of Theorem 4.3 one obtains a contradiction. This shows that u

is constant.
Assume now the validity of the Keller–Osserman condition (9), and suppose that u is a solution of (29).

By the previous arguments, if u is not constant then necessarily u∗ = +∞. Again, fix z0 as before and
r0 > 0 such that u 
≡ 0 on Br0 , and define u∗

0 = supBr0
u. Choose q̃, η, ε in such a way that u(q̃) > 2u∗

0,
0 < ε < η < u∗

0, and consider the function α defined as before with A = +∞. Then, v(q) = α(d(q)) is a
supersolution of (29) and

u(q) − v(q) � u∗
0 − ε on ∂Br0 ,

u(q̃) − v(q̃) > 2u∗
0 − η > u∗

0,

u(q) − v(q) → −∞ as r(q) → T−.

Hence, u − v attains a positive maximum in BT \ Br0 . The proof now proceeds in the same way as in the
previous case. �
Remark 5.3. As the reader will have noticed, the statements of the theorems and their proofs are more
involved for H1 than they are for Hm with m > 1 and even require more demanding assumptions on the
regularity of the solution in order to prove the non-existence result when �(0) = 0. This quite unusual fact
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appears to be a merely technical difficulty and the proofs of the results for m = 1 can be made considerably
simpler under a different, slightly more restrictive and less intrinsic set of hypotheses on the regularity of
the solution u, i.e. by assuming that u is a solution of class C2 in the traditional Euclidean sense instead of
assuming u ∈ Mα(H1).

Since the former set of hypotheses implies the latter, the validity of the result under these more restrictive
assumptions is trivial but, as it is apparent, besides being less complex to state, the “Euclidean” set of
assumptions has the advantage of allowing to proceed with essentially the same proof as in the case m > 1.
Indeed, under these assumptions, the set C in the statement of Proposition 4.1 has Hausdorff dimension
at most 2 with respect to the Euclidean metric on H1. Therefore, the Euclidean version of Eilenberg’s
inequality can be used to deduce that the set Ez0 is at most countable and discrete.

On the other hand, this “Euclidean” set of assumptions on u appears to be less natural for the setting of
the Heisenberg group, since it involves requests on the regularity of u as a function on R3, thus completely
ignoring the group structure and the other peculiar features of the Heisenberg group.

The regularity assumptions on the solution required by Theorem 5.1 and Theorem 5.2 are more restrictive
than those of their analogues in [17] and [4]. This is a technical issue due to the fact that Proposition 4.1
does not even make sense for functions less regular than C2

H . It is not clear to us if the assumption C1
H alone

is enough to prove a non-existence result. It is probably possible to weaken such regularity assumptions at
the expense of the legibility of the statement and the simplicity of the proof. We will not pursue this here.

A simple result with a weaker set of assumptions is the following.

Theorem 5.4. Let ϕ, f , � satisfy (3), (4), (5), (6), (7) and (10). Assume also the validity of the generalized
Keller–Osserman condition (9) and let G = {(z, t): t ∈ R, |z − z̃| < r} for some z̃ ∈ Cm and r > 0. If u is
a non-negative solution of

Δϕu � f(u)�
(
|∇0u|

)
on Hm (30)

such that u ∈ C1
H(Hm) ∩ C2

H(G) for m > 1, or u ∈ C1(H1) ∩Mβ(G) for some 1
2 < β � 1 for m = 1, then

u has an absolute maximum at a point qM ∈ Hm \G. In particular u cannot be unbounded.

Proof. First of all note that our regularity assumptions do not allow to use Theorem 4.3 (the maximum
principle). However, using the argument in the proof of Theorem 5.1 (which does not require the maximum
principle) we can show that u must be bounded. To apply such argument in our case, it is enough to choose
the center of balls inside G. In a similar way the first part of the proof can be used to show that u attains an
absolute maximum at some point qM ∈ Hm. Suppose now that qM ∈ G; then we can apply the maximum
principle to show that u is constant in G, hence in G. Thus u attains its maximum also on ∂G ⊂ Hm\G. �
6. Existence

Theorem 6.1. Assume the validity of (3), (4), (5) and (6). Assume also

ϕ′(t)
�(t) ∈ L1(0+). (31)

Then, if the generalized Keller–Osserman condition (9) is not satisfied, there exists a non-negative, non-
constant solution u ∈ C1

H(Hm) ∩ C2
H(Hm \ {z = 0}) of inequality

Δϕu � f(u)l
(
|∇0u|

)
. (32)
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Proof. Since inequality (32) has no non-negative non-constant bounded solutions regardless of the Keller–
Osserman condition, our aim is to produce an unbounded, non-negative solution under the assumption that
the Keller–Osserman condition is not satisfied. This will be achieved by pasting together two subsolutions
defined on complementary sets. Such solutions will be “radial” in the variables of the first layer, that is,
functions of the form v(z, t) = w(|z|). Straightforward computation shows that

∣∣∇0|z|
∣∣ ≡ 1, ΔHm |z| = 2m− 1

|z| , (33)

and thus the expression of the ϕ-Laplacian for such functions is

Δϕv = ϕ′(∣∣w′(|z|)∣∣)w′′(|z|) + 2m− 1
|z| sgn

(
w′(|z|))ϕ(∣∣w′(|z|)∣∣). (34)

Assume first that

1
K−1(F (t)) ∈ L1(0+),

then we set v(z, t) = w(|z|), where w is defined implicitly by

t =
w(t)∫
0

ds

K−1(F (s)) . (35)

Note that w is well defined, w(0) = 0 and, since the Keller–Osserman condition does not hold, w(t) → +∞
as t → +∞. Differentiating (35) yields

w′(t) = K−1(F (
w(t)

))
� 0, (36)

and a further differentiation gives

ϕ′(w′)w′′ = f(w)l
(
w′), (37)

so that

Δϕv = ϕ′(w′(|z|))w′′(|z|) + 2m− 1
|z| ϕ

(
w′(|z|)) � f(v)l

(
|∇0v|

)
.

Finally, v is trivially of class C2
H(Hm \ {z = 0}) and is also C1

H(Hm) since, by construction, w′(0) = 0.
Assume now that

1
K−1(F (t)) /∈ L1(0+).

Fix ε > 0 and define implicitly the C2-function w on (0,+∞)0 by setting

t =
w(t)∫
ε

ds

K−1(F (s)) . (38)

As before, w is well defined, w(0) = ε and, since the Keller–Osserman condition does not hold, w(t) → +∞
as t → +∞. Note that (36) and (37) still hold. We fix z1 > 0 to be specified later and set
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Az1 =
{
(z, t) ∈ Hm: |z| < z1

}
,

and let u1 be the function defined on Hm \Az1 by the formula u1(z, t) = w(|z|). Since, by (33), |∇0u1| = w′,
using (34) and (37) we conclude that u1 satisfies

Δϕu1 = ϕ′(w′(|z|))w′′(|z|) + 2m− 1
|z| ϕ

(
w′(|z|)) � f(u1)l

(
|∇0u1|

)
(39)

on Hm \Az1 .
To produce a subsolution u2 on Az1 define a function Ω through

Ω(s)∫
0

ϕ′(t)
l(t) dt = f(1)s. (40)

Note that Ω is well defined by (31), solves the differential equation

ϕ′(Ω(s))
l(Ω(s)) Ω′(s) = f(1)

and is increasing and unbounded. We set

β(t) =
t∫

0

Ω(s) ds + β0

where

β0 = 1 − F (1)
f(1)

(note that β0 > 0 since f is monotone increasing) and observe that, by a simple change of variable,

β(t) = 1
f(1)

Ω(t)∫
0

uϕ′(u)
l(u) du + β0 = K(Ω(t))

f(1) + β0.

We define the function u2(z, t) = β(|z|) and we shall prove that we can choose the parameters z1 and ε so
that u1 and u2 join at ∂Az1 together with their first and second derivatives. To this end, we choose z1 so
that it satisfies

Ω(z1) = K−1(F (1)
)

(this is possible since Ω is increasing and unbounded from above) and observe that

β(z1) = F (1)
f(1) + β0 = 1.

A simple computation then shows that, for every t ∈ [0, z1],

ϕ′(β′(t)
)
β′′(t) = f(1)l

(
β′(t)

)
� f

(
β(t)

)
l
(
β′(t)

)
,
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so that

Δϕu2 = ϕ′(β′(|z|))β′′(|z|) + 2m− 1
|z| ϕ

(
β′(|z|)) � f(u2)l

(
|∇0u2|

)
.

In order to have β(z1) = w(z1), we need to find a value of ε such that w(z1) = 1, that is

z1 =
1∫

ε

ds

K−1(F (s)) .

This is possible by virtue of the fact that, by assumption,

1
K−1(F (t)) /∈ L1(0+).

With this choice of the parameters, we have that

w(z1) = 1 = β(z1),

w′(z1) = K−1(F (1)
)

= β′(z1)

and, since

ϕ′(β′(z1)
)
β′′(z1) = f(1)l

(
β′(z1)

)
= ϕ′(w′(z1)

)
w′′(z1),

we also have the equality of the second derivatives. This, together with the fact that β′(0) = 0 by construc-
tion, proves that the function

u(x) =
{
u1(x) on Hm \Az1 ,

u2(x) on Az1

(41)

is a solution of Δϕu � f(u)l(|∇u|) with the required regularity. �
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Appendix A

In this section, we state and prove a simple result concerning the Hausdorff dimension of the image of
a set through a Hölder continuous map, which we have used to prove Proposition 3.2, Proposition 3.4 and
Proposition 4.1. Although the proof of this proposition is quite straightforward, we reproduce it here for
the sake of completeness.

First of all we recall that, if (X, d1) and (Y, d2) are metric spaces and β � 0, a map f : X → Y is said
to be Hölder continuous of exponent β if there exists C > 0 such that for every x, y ∈ X

d2
(
f(x), f(y)

)
� Cd1(x, y)β .

We shall denote by Cβ(X,Y ) the space of Hölder continuous maps with exponent β and observe that, if
β = 1, Cβ(X,Y ) is just the space of Lipschitz continuous maps.
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Proposition A.1. Let (X, d1) and (Y, d2) be metric spaces, let f : X → Y be a Cβ map for some β > 0 and
A ⊆ X. Then

dim(Y,d2)
(
f(A)

)
� 1

β
dim(X,d1)(A).

Proof. Let C be the Hölder constant of f and let s � 0. Assume that Hs(A) < +∞ and recall that

Hs(A) = lim
δ→0

inf⋃
Sj⊇A

diam Sj�δ

∑
j

ωs

(
diamSj

2

)s

,

where

ωs = π
s
2

Γ ( s2 + 1) .

The set A has finite s-dimensional Hausdorff measure if and only if there exist positive M and δ0 such that
for every δ < δ0

inf⋃
Sj⊇A

diam Sj�δ

∑
j

(diamSj)s < M.

Denoting by {S(k)
j,δ } a minimizing sequence of coverings of A with diameters smaller than δ which realizes

the infimum in the definition of Hausdorff measure, then we have that there exist M > 0 and δ0 > 0 such
that, for every δ < δ0

∑
j

(
diamS

(k)
j,δ

)s
< M

for sufficiently large k.
Now set

K
(k)
j,δ = f

(
S

(k)
j,δ

)

and observe that K
(k)
j,δ is a covering of f(A) with the property that

diamK
(k)
j,δ � C

(
diamS

(k)
j,δ

)β
.

In particular,

diamK
(k)
j,δ � Cδβ

and, for δ small and k big enough,

∑
j

(
diamK

(k)
j,δ

) s
β � C

s
β

∑
j

(
diamS

(k)
j,δ

)s
< C

s
β M.

With this in mind we can prove that H s
β (f(A)) < +∞: fix M1 = C

s
β M > 0 and set δ1 = Cδβ0 . Then for

every δ < δ1 we have
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inf⋃
Sj⊇f(A)

diam Sj�δ

∑
j

(diamSj)
s
β �

∑
j

(
diamK

(k)

j,( δ
C )

1
β

) s
β < M1

for k big enough, which proves the claim.
Now recall that, by definition,

dim(A) = inf
{
p: Hp(A) = 0

}
= sup

{
p: Hp(A) = +∞

}
,

hence for every s such that Hs(A) < +∞,

dim
(
f(A)

)
= sup

{
p: Hp

(
f(A)

)
= +∞

}
� s

β
,

that is, β dim(f(A)) is a lower bound for the set

{
p: Hp(A) < +∞

}
⊇

{
p: Hp(A) = 0

}
,

hence

β dim
(
f(A)

)
� inf

{
p: Hp(A) = 0

}
= dim(A),

which completes the proof. �
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