期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:451
On the abelian complexity of the Rudin-Shapiro sequence
Article
Lu, Xiaotao1  Chen, Jin2  Wen, Zhixiong1  Wu, Wen3,4 
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
[3] South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R China
[4] Univ Oulu, Math, POB 3000, Oulu 90014, Finland
关键词: Rudin-Shapiro sequence;    Abelian complexity;    k-Regular sequence;    Automatic sequence;    Box dimension;   
DOI  :  10.1016/j.jmaa.2017.02.019
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the abelian complexity of the Rudin Shapiro sequence and a related sequence. We show that these two sequences share the same complexity function p(n), which satisfies certain recurrence relations. As a consequence, the abelian complexity function is 2-regular. Further, we prove that the box dimension of the graph of the asymptotic function lambda(x) is 3/2, where lambda(x) = lim(k ->infinity) rho(4(k)x)/root 4(k)x and rho(x) = p(inverted left perpendicular x inverted right perpendicular) for every x > 0. 9c0 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2017_02_019.pdf 907KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次