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In this paper, we study the abelian complexity of the Rudin–Shapiro sequence and 
a related sequence. We show that these two sequences share the same complexity 
function ρ(n), which satisfies certain recurrence relations. As a consequence, 
the abelian complexity function is 2-regular. Further, we prove that the box 
dimension of the graph of the asymptotic function λ(x) is 3/2, where λ(x) =
limk→∞ ρ(4kx)/

√
4kx and ρ(x) = ρ(�x�) for every x > 0.
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1. Introduction

The abelian complexity of infinite words has been examined by Coven and Hedlund in [6] as an alternative 
way to characterize periodic sequences and Sturmian sequences. Richomme, Saari, and Zamboni introduced 
this notion formally in [11], which initiated a general study of the abelian complexity of infinite words 
over finite alphabets. For example, the abelian complexity functions of some notable sequences, such as the 
Thue–Morse sequence and all Sturmian sequences, were studied in [11] and [6], respectively. There are also 
many other works devoted to this subject; see [3,9,7,10] and references therein. In the following, we shall 
give the definition of abelian complexity.

Let w = w(0)w(1)w(2) · · · be an infinite sequence over a finite alphabet A. Let Fw(n) denote the set of 
all factors of w of length n, i.e.,
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Fw(n) := {w(i)w(i + 1) · · ·w(i + n− 1) : i ≥ 0}.

Two finite words u, v over the same alphabet A are abelian equivalent if |u|a = |v|a for every letter a ∈ A. 
Abelian equivalency induces an equivalence relation, denoted by ∼ab. Now we are ready to state the definition 
of abelian complexity.

Definition 1. The abelian complexity function ρw : N → N of w is defined by

ρw(n) := #(Fw(n)/ ∼ab).

The first part of this paper is devoted to the study of the regularity of the abelian complexity of the 
Rudin–Shapiro sequence r = r(0)r(1)r(2) · · · , whose generating function R(z) :=

∑
n≥0 r(n)zn satisfies the 

Mahler-type functional equation

R(z) + R(−z) = 2R(z2).

Let r′ denote the coefficient sequence of R(−z). To state our results, we shall recall the definitions of 
k-regular and k-automatic sequences. For more details, see [2].

Definition 2. Let k ≥ 2 be an integer. The k-kernel of an infinite sequence w = (w(n))n≥0 is the set of 
subsequences

Kk(w) := {(w(ken + c))n≥0 | e ≥ 0, 0 ≤ c < ke}.

The sequence w is k-automatic if Kk(w) is finite. If the Z-module generated by its k-kernel is finitely 
generated, then w = (w(n))n≥0 is k-regular.

Now we state our first result.

Theorem A. The abelian complexity of the Rudin–Shapiro sequence r, which is the same as the abelian 
complexity of r′, is 2-regular.

In the second part, inspired by the work of Brillhart, Erdős and Morton [4], we study the limit function

λ(x) := lim
k→∞

ρ(4kx)√
4kx

,

where ρ(x) := ρ(�x	) for every x > 0. The function λ is continuous and non-differentiable almost everywhere; 
for details, see [5]. Further, λ(x) is self-similar in the sense that λ(x) = λ(4x) for every x > 0. The graph of 
λ(x) on the interval [1, 4], which is illustrated in Fig. 1, has potential to be a fractal curve; and it is.

To introduce our next result, we shall recall the definition of box dimension. Let δ > 0. For every 
m1, m2 ∈ Z, we call the following square

[m1δ, (m1 + 1)δ] × [m2δ, (m2 + 1)δ]

a δ-mesh of R2. Let F ⊂ R
2 be a non-empty bounded set in R2, and Nδ(F ) be the number of δ-meshes that 

intersect F . The upper and lower box dimensions are defined by
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Fig. 1. The graph of λ(x) for x ∈ [1, 4].

dimBF := limδ→0
logNδ(F )
− log δ and dimBF := limδ→0

logNδ(F )
− log δ ,

respectively. If dimBF = dimBF , then the common value is the box dimension of F . Let dimB F denote 
the box dimension of F . For more details, see [8].

Theorem B. The box dimension of the graph of λ(x) on every subinterval of (0, +∞) is 3/2.

A variety of interesting fractals, both of theoretical and practical importance, occur as graphs of functions. 
Yue proved in [13] that the graph of one limit function studied in [4] also has box dimension 3/2. With 
probability 1, the graph of a one-dimensional Brownian sample function has Hausdorff dimension and 
box dimension 3/2; see [8, Theorem 16.4]. For every b ≥ 2, the graph of the Weierstrass function W (x) =∑∞

n=0 b
−n/2 cos(bnx) has Hausdorff dimension and box dimension 3/2; see, for example, [8,12] and references 

therein. For the Hausdorff dimension of the graph of λ(x), Theorem B poses a good candidate 3/2. It is 
natural to conjecture that the Hausdorff dimension of the graph of λ(x) equals 3/2.

The outline of this paper is as follows. In Section 2, we state basic definitions and notation. In Section 3, 
we give recurrence relations for the abelian complexity functions of the sequences r and r′. As a consequence, 
the abelian complexity function of the Rudin–Shapiro sequence is 2-regular, and the first difference of the 
abelian complexity function of the Rudin–Shapiro sequence is 2-automatic. In the last section, the box 
dimension of the graph of the function λ(x) is studied.

2. Preliminary

In this section, we shall introduce some notation.

2.1. Finite and infinite words

An alphabet A is a finite and non-empty set (of symbols) whose elements are called letters. A (finite) word
over the alphabet A is a concatenation of letters in A. The concatenation of two words u = u(0)u(1) · · ·u(m)
and v = v(0)v(1) · · · v(n) is the word uv = u(0)u(1) · · ·u(m)v(0)v(1) · · · v(n). The set of all finite words over 
A including the empty word ε is denoted by A∗. An infinite word w is an infinite sequence of letters in A. 
The set of all infinite words over A is denoted by AN.

The length of a finite word w ∈ A∗, denoted by |w|, is the number of letters contained in w. We set 
|ε| = 0. For every word u ∈ A∗ and every letter a ∈ A, let |u|a denote the number of occurrences of a in u.

A finite word w is a factor of a finite (or an infinite) word v, written by w ≺ v, if there exist a finite word 
x and a finite (or an infinite) word y such that v = xwy. When x = ε, w is called a prefix of v, denoted by 
w � v; when y = ε, w is called a suffix of v, denoted by w � v.
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2.2. Digit sums

Now we assume that the alphabet A is composed of integers. Let w = w(0)w(1)w(2) · · · ∈ AN be an 
infinite word. For every i ≥ 0 and n ≥ 1, the sum of consecutive n letters in w starting from the position i
is denoted by

Σw(i, n) :=
i+n−1∑
j=i

w(j).

The maximal sum and minimal sum of consecutive n (n ≥ 1) letters in w are denoted by

Mw(n) := max
i≥0

Σw(i, n) and mw(n) := min
i≥0

Σw(i, n).

In addition, we always assume that Mw(0) = mw(0) = 0.
Let DS denote the digit sum of a finite word u = u(0) · · ·u(|u| − 1) ∈ A∗, i.e.,

DS(u) :=
|u|−1∑
j=0

u(j).

Then

Mw(n) = max
{
DS(v) : v ∈ Fw(n)

}
and

mw(n) = min
{
DS(v) : v ∈ Fw(n)

}
.

The abelian complexity function of an infinite word w over {−1, 1} is closely related to the digit sums of 
factors of w.

Proposition 1. Let w ∈ {−1, 1}N. Then

ρw(n) = Mw(n) −mw(n)
2 + 1.

Proof. For a proof one can refer to [3, Proposition 2.2]. �
2.3. The Rudin–Shapiro sequence r and a related sequence r′

The Rudin–Shapiro sequence

r = r(0)r(1) · · · r(n) · · · ∈ {−1, 1}N

is given by the following recurrence relations:

r(0) = 1, r(2n) = r(n), r(2n + 1) = (−1)nr(n) (n ≥ 0). (2.1)

The generating function R(z) =
∑

n≥0 r(n)zn of the Rudin–Shapiro sequence satisfies the following Mahler-
type functional equation
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R(z) + R(−z) = 2R(z2).

We also study the coefficient sequence of R(−z), denoted by

r′ = r′(0)r′(1) · · · ∈ {−1, 1}N.

Clearly, r′(n) = (−1)nr(n) for all n ≥ 0. Thus

r′(0) = 1, r′(2n) = (−1)nr′(n), r′(2n + 1) = −r′(n) (n ≥ 0). (2.2)

The Rudin–Shapiro sequence can also be generated by a substitution in the following way. Let σ :
{a, b, c, d} → {a, b, c, d}∗ and τ, τ ′ : {a, b, c, d} → {−1, 1}∗, where

σ : a 
→ ab, b 
→ ac, c 
→ db, d 
→ dc,

τ : a 
→ 1, b 
→ 1, c 
→ −1, d 
→ −1,
τ ′ : a 
→ 1, b 
→ −1, c 
→ 1, d 
→ −1.

Let s := σ∞(a) be the fixed point of σ beginning with a. Then

r = τ(σ∞(a)) and r′ = τ ′(σ∞(a)).

Let Ms(n) (and M′
s(n)) denote the set of all the factors of length n in s such that the sum of letters of 

such factor under the coding τ (and τ ′, respectively) attains the maximal value, i.e.,

Ms(n) := {u ∈ Fs(n) : S(u) = Mr(n)},

M′
s(n) := {u ∈ Fs(n) : S′(u) = Mr′(n)},

where S := DS ◦ τ and S′ := DS ◦ τ ′.

3. The regularity of the abelian complexity of r and r′

In this section, we shall discuss the regularity of the abelian complexity functions of the Rudin–Shapiro 
sequence r and the sequence r′. From now on, unless otherwise stated, we always set A = {−1, 1}.

3.1. Statement of results

Theorem 1. For every n ≥ 1,

Mr(n) = Mr′(n) =: M(n).

Moreover, M(1) = 1, M(2) = 2, M(3) = 3 and for n ≥ 1,

M(4n) = 2M(n) + 2, M(4n + 1) = 2M(n) + 1,

M(4n + 2) = M(n) + M(n + 1) + 1, M(4n + 3) = 2M(n + 1) + 1.

Corollary 1. The sequence (M(n))n≥0 is 2-regular.

Proof. The result follows from Theorem 1, [2, Theorem 16.1.3 (e)] and [1, Theorem 2.9]. �
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Fig. 2. The 4-automaton generating (ΔM(n))n≥0. (The most-significant digit is read first.)

For all n ≥ 0, let

ΔM(n) := M(n + 1) −M(n).

The difference sequence (ΔM(n))n≥0 is characterized by the following result.

Corollary 2. ΔM(i) = 1 for 0 ≤ i ≤ 3, and for n ≥ 1,{
ΔM(4n) = −ΔM(4n + 3) = −1,

ΔM(4n + 1) = ΔM(4n + 2) = ΔM(n).
(3.1)

Moreover, (ΔM(n))n≥0 is a 2-automatic sequence.

Proof. The difference sequence (ΔM(n))n≥0 can be generated by the automaton given in Fig. 2. �
Theorem 2. For every n ≥ 1,

ρr(n) = ρr′(n) := ρ(n).

Moreover, (ρ(n))n≥0 is 2-regular.

Proof. This result follows from Theorem 1 and Lemma 3 (proved below). �
3.2. Some lemmas

To prove Theorem 1, we need the following lemmas.

Lemma 1. For every word w ∈ {a, b, c, d}∗, we have

S(σ2(w)) = 2S(w) and S′(σ2(w)) = 2S′(w).

Proof. Observing that both S and S′ are morphisms from ({a, b, c, d}∗, ·) to (Z, +), where ‘·’ is the concate-
nation of words, we only need to show the equalities in the lemma hold for every letter x ∈ {a, b, c, d}. By 
the definition of σ, we get

σ2 : a 
→ abac, b 
→ abdb, c 
→ dcac, d 
→ dcdb.

Recall that τ : a 
→ 1, b 
→ 1, c 
→ −1, d 
→ −1. Thus,

S(σ2(a)) = S(abac) = DS ◦ τ(abac) = DS(111(−1)) = 2 = 2S(a).

One can verify the remaining cases in the same way. �
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Lemma 2. For every n ≥ 1,

Ma(n) + ma(n) = 0,

where a represents the Rudin–Shapiro sequence r or the sequence r′.

Proof. We only prove the case a = r. The result for a = r′ follows in the same way.
Let μ be the coding

μ : a 
→ d, b 
→ c, c 
→ b, d 
→ a.

Then μ ◦σ = σ ◦μ and μ ◦μ = Id. We first prove the following two facts: for every W ∈ {a, b, c, d}n (n ≥ 1),

1. W is a factor of s if and only if μ(W ) is a factor of s;
2. S(W ) = Mr(n) if and only if S(μ(W )) = mr(n).

For Fact 1, if W is a factor of s, then W is a factor of σk(a) for some k. Therefore, μ(W ) is a factor of 
μ(σk(a)) = σk(d), which is a factor of σk+4(a). Hence, μ(W ) is also a factor of s. The converse holds in 
the same argument by replacing W by μ(W ). For Fact 2, suppose S(W ) = Mr(n) and S(μ(W )) �= mr(n). 
Without loss of generality, assume that S(μ(W )) > mr(n). This means that there exists a word W ′ ∈ Fs(n)
such that |W ′|c + |W ′|d > |W |c + |W |d. Therefore,

|μ(W ′)|a + |μ(W ′)|b = |W ′|c + |W ′|d > |μ(W )|c + |μ(W )|d = |W |a + |W |b.

It follows that Mr(n) = S(W ) < S(μ(W ′)), which is a contradiction. Using a similar argument, we can 
prove the converse.

Notice that S(μ(W )) = −S(W ). Then, by Facts 1 and 2, the proof is completed. �
Lemma 3. For every n ≥ 1,

ρa(n) = Ma(n) + 1,

where a represents the Rudin–Shapiro sequence r or the sequence r′.

Proof. The result follows from Proposition 1 and Lemma 2. �
The following lemma characterizes Σr(·, ·), which is useful in the study of Mr.

Lemma 4. For every n ≥ 1 and i ≥ 0, we have

(1) Σr(4i, 4n) = 2Σr(i, n),
(2) Σr(4i + 1, 4n) = Σr(i, n) + Σr(i + 1, n),
(3) Σr(4i + 2, 4n) = 2Σr(i + 1, n),
(4) Σr(4i + 3, 4n) = 2Σr(i + 1, n) − r(4i + 4n + 3) + r(4i + 3),
(5) Σr(4i, 4n + 1) = 2Σr(i, n) + r(i + n),
(6) Σr(4i + 1, 4n + 1) = 2Σr(i + 1, n) + r(i),
(7) Σr(4i + 2, 4n + 1) = 2Σr(i + 1, n) + r(4i + 4n + 2),
(8) Σr(4i + 3, 4n + 1) = 2Σr(i + 1, n) + r(4i + 3),
(9) Σr(4i, 4n + 2) = Σr(i, n) + Σr(i, n + 1) + r(i + n),
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(10) Σr(4i + 1, 4n + 2) = Σr(i + 1, n) + Σr(i, n + 1) + r(4i + 4n + 2),
(11) Σr(4i + 2, 4n + 2) = Σr(i + 1, n) + Σr(i + 1, n + 1) − r(i + n + 1),
(12) Σr(4i + 3, 4n + 2) = Σr(i + 1, n) + Σr(i + 1, n + 1) + r(4i + 3),
(13) Σr(4i, 4n + 3) = 2Σr(i, n + 1) − r(4i + 4n + 3),
(14) Σr(4i + 1, 4n + 3) = 2Σr(i, n + 1) − r(i),
(15) Σr(4i + 2, 4n + 3) = 2Σr(i + 1, n + 1) − r(i + n + 1),
(16) Σr(4i + 3, 4n + 3) = 2Σr(i + 1, n + 1) + r(4i + 3).

Proof. By (2.1), we have for all n ≥ 0,

r(4n) = r(4n + 1) = r(n), r(4n + 2) = −r(4n + 3) = (−1)nr(n).

Then by the previous equations and the definition of Σr, these 16 equations can be verified directly. Here 
we give the proof of the first two equations as examples:

Σr(4i, 4n) =
4i+4n−1∑

j=4i
r(j)

=
i+n−1∑
j=i

(r(4j) + r(4j + 1) + r(4j + 2) + r(4j + 3))

=
i+n−1∑
j=i

(r(j) + r(j) + (−1)jr(j) − (−1)jr(j))

= 2
i+n−1∑
j=i

r(j) = 2Σr(i, n)

and

Σr(4i + 1, 4n) = Σr(4i, 4n) + r(4i + 4n) − r(4i) = 2Σr(i, n) + r(i + n) − r(i)

= Σr(i, n) + Σr(i + 1, n).

The remaining equations can be proved in the same way. �
Remark 1. Lemma 4 implies that the double sequence (Σr)i≥0,n≥1 is a two-dimensional 2-regular sequence. 
For a definition of two-dimensional regular sequences, see [2].

The following lemma gives upper bounds of the maximal values of the sums of consecutive n terms of r
and r′.

Lemma 5. For every n ≥ 1,

Mr(4n) ≤ 2Mr(n) + 2,

Mr(4n + 1) ≤ 2Mr(n) + 1,

Mr(4n + 2) ≤ Mr(n) + Mr(n + 1) + 1,

Mr(4n + 3) ≤ 2Mr(n + 1) + 1.

Moreover, the above inequalities also hold for Mr′.
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Table 1
The initial values for Lemma 6.

n 1 2 3 4 5 6 7
Wn a ba aba baba babac babdba abdbaba
Mr(n) 1 2 3 4 3 4 5

Proof. For the first inequality, we shall use the first four equations of Lemma 4. By equations (1) to (3) of 
Lemma 4, we obtain that for k = 0, 1, 2,

Σr(4i + k, 4n) ≤ max{2Σr(i, n),Σr(i, n) + Σr(i + 1, n), 2Σr(i + 1, n)}

≤ 2Mr(n).

When k = 3, by equation (4) of Lemma 4, we have

Σr(4i + k, 4n) = 2Σr(i + 1, n) − r(4i + 4n + 3) + r(4i + 3)

≤ 2Mr(n) + 2.

Therefore, Mr(4n) ≤ 2Mr(n) + 2.
In a similar way, using the remaining 12 equations of Lemma 4, we can prove the remaining three 

inequalities for Mr.
To prove the result for Mr′ , one can deduce a similar result to Lemma 4 for r′, and apply a similar 

argument as above. We leave the details to the reader. �
3.3. Proof of Theorem 1

To prove Theorem 1, we only need to show that all equalities in Lemma 5 hold. For this, we shall construct 
two sequences of words, which attain the upper bounds in Lemma 5 for r and r′, respectively. This will be 
done in Lemmas 6 and 7. Then, Theorem 1 follows directly from Lemmas 5, 6 and 7.

Now we shall give the sequence of words for r. Let (Wn)n≥1 be the sequence of words defined by W1 = a, 
W2 = ba, W3 = aba and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W4n = bσ2(Wn)c−1,

W4n+1 = bσ2(Wn),

W4n+2 =
{
bσ2(Wn+1)(bac)−1 if ΔMr(n) = 1,
cdbσ2(Wn)c−1 if ΔMr(n) = −1,

W4n+3 = σ2(Wn+1)c−1.

(3.2)

Lemma 6. Let (Wn)n≥1 ⊂ {a, b, c, d}∗ be given by (3.2). Then, for every n ≥ 1,

(i) either bWn ≺ s or dWn ≺ s holds;
(ii) either a � Wn or c � Wn holds;
(iii) Wn ∈ Ms(n).

Proof. We shall prove (i), (ii) and (iii) simultaneously by induction.
Step 1. We shall show that the results hold for n < 8. Let (Wn)7n=1 be the words given in Table 1.
Notice that (Wn)7n=1 are factors of σ2(dba) = dcdbabdbabac, which is a factor of s, (i) and (ii) hold for 

n < 8. For n = 1, 2, 3, clearly Mr(n) = S(Wn), which implies Wn ∈ Ms(n). Since S(W4) = 4 = 2Mr(1) + 2, 
S(W5) = 3 = 2Mr(1) + 1, S(W6) = 4 = Mr(1) +Mr(2) + 1 and S(W7) = 5 = 2Mr(2) + 1, by Lemma 5, we 
have S(Wn) = Mr(n) and Wn ∈ Ms(n) for n = 4, 5, 6, 7. Therefore, (iii) holds for n < 8.
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Step 2. Assuming that (i), (ii) and (iii) hold for n < 4k (k ≥ 2), we shall prove the results for 4k ≤ n <
4(k + 1). The proof in this step will be separated into the following two cases.
Case 1: ΔMr(k) = 1. In this case, the induction hypotheses (i), (ii) and (iii) yield the following facts:

(1a) Wk ∈ Ms(k) and Wk+1 ∈ Ms(k + 1);
(1b) dbσ2(Wk) and dbσ2(Wk+1) are factors of s;
(1c) either a � Wk or c � Wk holds, and a � Wk+1.

(In the last statement (1c), we can exclude the case c � Wk+1 since ΔMr(k) = 1. In fact, if Wk+1 = Wc, 
then

Mr(k + 1) = S(Wk+1) = S(W ) + S(c) = S(W ) − 1 ≤ Mr(k) − 1,

which contradicts the assumption ΔMr(k) = Mr(k + 1) −Mr(k) = 1.) Now, by (3.2) and (1b), dWn is a 
factor of s for 4k ≤ n ≤ 4k+2 and bW4k+3 is a factor of s. This implies that (i) holds for 4k ≤ n < 4(k+1), 
and

Wn is a factor of s for 4k ≤ n < 4(k + 1). (3.3)

By Fact (1c), we have ac � σ2(Wk) and abac = σ2(a) � σ2(Wk+1). Therefore, (3.2) gives

a � W4k, c � W4k+1, a � W4k+2 and a � W4k+3. (3.4)

So (ii) holds. Now, by (3.2), (3.4), (1a) and Lemma 1, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S(W4k) = S(b) + S(σ2(Wk)) − S(c) = 2Mr(k) + 2,
S(W4k+1) = S(b) + S(σ2(Wk)) = 2Mr(k) + 1,
S(W4k+2) = S(b) + S(σ2(Wk+1)) − S(bac)

= 2Mr(k + 1) = Mr(k) + Mr(k + 1) + 1,
S(W4k+3) = S(σ2(Wk+1)) − S(c) = 2Mr(k + 1) + 1.

(3.5)

By (3.3), (3.5) and Lemma 5, we have Wn ∈ Ms(n) for 4k ≤ n < 4(k + 1), which is (iii).
Case 2: ΔMr(k) = −1. In this case, we first assert that dWk is a factor of s. By the induction hypothesis (i), 
we only need to show that bWk can not be a factor of s. If this is not the case, then

Mr(k + 1) ≥ S(bWk) = 1 + S(Wk) = 1 + Mr(k),

where the last equality follows from (iii). Then, we have ΔMr(k) = Mr(k+1) −Mr(k) ≥ 1, which contradicts 
the assumption ΔMr(k) = Mr(k + 1) −Mr(k) = 1. Therefore, applying the induction hypotheses (i), (ii)
and (iii), we have

(2a) Wk ∈ Ms(k) and Wk+1 ∈ Ms(k + 1);
(2b) dcdbσ2(Wk) and bσ2(Wk+1) are factors of s;
(2c) ac � σ2(Wk) and ac � σ2(Wk+1).

By (3.2) and (2b), we have

dWn is a factor of s for 4k ≤ n ≤ 4k + 2 (3.6)

and bW4k+3 is a factor of s. So (i) holds. This implies that
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Wn is a factor of s for 4k ≤ n < 4(k + 1). (3.7)

Combining (2c) and (3.2), we obtain that (ii) holds for 4k ≤ n < 4(k + 1). Now, by (3.2), (2a), (2c) and 
Lemma 1, we have

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S(W4k) = S(b) + S(σ2(Wk)) − S(c) = 2Mr(k) + 2,
S(W4k+1) = S(b) + S(σ2(Wk)) = 2Mr(k) + 1,
S(W4k+2) = S(cbd) + S(σ2(Wk)) − S(c)

= 2Mr(k) = Mr(k) + Mr(k + 1) + 1,
S(W4k+3) = S(σ2(Wk+1)) − S(c) = 2Mr(k + 1) + 1.

(3.8)

By (3.7), (3.8) and Lemma 5, we have Wn ∈ Ms(n) for 4k ≤ n < 4(k + 1), which is (iii). The proof is 
completed. �

For r′, let (W̃n)n≥1 be the sequence of words defined by W̃1 = c, W̃2 = ca, W̃3 = cac and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W̃4n = d−1σ2(W̃n)a,
W̃4n+1 = σ2(W̃n)a,

W̃4n+2 =
{

(dca)−1σ2(W̃n+1)a if ΔMr′(n) = 1,
d−1σ2(W̃n)abd if ΔMr′(n) = −1,

W̃4n+3 = d−1σ2(W̃n+1).

(3.9)

Lemma 7. Let (W̃n)n≥1 ⊂ {a, b, c, d}∗ be given by (3.9). Then, for every n ≥ 1,

(i) either W̃na ≺ s or W̃nb ≺ s holds;
(ii) either c � W̃n or d � W̃n holds;
(iii) W̃n ∈ M′

s(n).

Proof. The proof of this lemma is similar to the proof of Lemma 6. �
For every k-automatic sequence w = w(0)w(1) · · · ∈ {−1, 1}N, the regularity of the maximal partial 

sums (Mw(n))n≥1 and the minimal partial sums (mw(n))n≥1 imply the regularity of the abelian com-
plexity (ρw(n))n≥1. By proving the same result as Lemma 4, one can show that the double sequence 
(Σw(i, n))i≥0,n≥1 is a two-dimensional k-regular sequence. In fact, it is not hard to show that (Σw(i, n))i≥0

is k-automatic for every fixed n ≥ 1, and (Σw(i, n))n≥1 is k-regular for every fixed i ≥ 0. Moreover, The-
orem 1 and Lemma 2 show that (maxi≥0 Σw(i, n))n≥1 and (mini≥0 Σw(i, n))n≥1 are still k-regular when 
w is the Rudin–Shapiro sequence r or its related sequence r′. This implies the regularity of the abelian 
complexity functions (ρr(n))n≥0 and (ρr′(n))n≥0. It is natural to ask that whether (maxi≥0 Σw(i, n))n≥1

and (mini≥0 Σw(i, n))n≥1 are always k-regular for every k-automatic sequence w over {−1, 1}.

4. Box dimension of λ(x)

Let M(x) := M(�x	) (x > 0) be the continuous version of the maximal digit sum function, and ρ(x) =
M(x) + 1. Now we study the following limit function:

λ(x) := lim ρ(4kx)√ . (4.1)

k→∞ 4kx
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From the above definition, provided the limit exists, it is easy to see that λ(x) is self-similar in the sense 
that for every x > 0,

λ(4x) = λ(x).

The existence of the limit in (4.1) follows from the same argument in [4, Theorem 1]. For completeness, we 
give the details in the following Proposition 2.

Let
∞∑
j=0

xj4−j (4.2)

denote the 4-adic expansion of a real positive number x > 0, where x0 ∈ N and xj ∈ {0, 1, 2, 3} for all j ≥ 1. 
In the expansion (4.2), we always assume that there are infinitely many j such that xj �= 3. Let

aj(x) :=
{

− 1, if 4jx < 1,

ΔM(�4jx	 − 1),otherwise,

and

d(y) :=

⎧⎪⎨⎪⎩
1, if y = 0 or 2,
0, if y = 1,
2, if y = 3.

Proposition 2. The limit (4.1) exists for all x > 0, and for every x > 0, it satisfies

λ(x) = ρ(x) + a(x)√
x

, (4.3)

where a(x) :=
∞∑
j=1

d(xj)aj(x)2−j. Moreover, for every positive integer n,

λ(n) = (ρ(n) + 1)/
√
n.

Proof. By Theorem 1 and Corollary 2, we have

M(4n + i) = 2M(n) + 1 + d(i)ΔM(4n + i− 1)

for all n ≥ 1 and i = 0, 1, 2, 3. Let N be the smallest integer such that 4Nx ≥ 1. Then, for every k ≥ N ,

M(4kx) = M(�4kx	) = M(4�4k−1x	 + xk)

= 2M(�4k−1x	) + 1 + d(xk)ΔM(�4kx	 − 1)

= 2M(4k−1x) + 1 + d(xk)ak(x).

For 1 ≤ k < N , d(xk) = d(0) = 1 and ak(x) = −1. Thus, we also have

M(4kx) = 0 = 1 + (−1)

= 1 + d(xk)ak(x)

= 2M(4k−1x) + 1 + d(xk)ak(x).
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By induction, the above equation yields

M(4kx) = 2kM(x) +
k∑

j=1
d(xj)aj(x)2k−j + (2k − 1).

Now, by Lemma 3

ρ(4kx)√
4kx

= M(4kx) + 1√
4kx

= ρ(x)√
x

+ 1√
x

k∑
j=1

d(xj)aj(x)2−j .

Letting k → ∞ and noticing that the series in (4.3) converges absolutely, we obtain (4.3).
When x = n ∈ N

+, x0 = n, xj = 0 and aj = 4jn − 1 for all j ≥ 1, the infinite sums in (4.3) turn out to 
be

∞∑
j=1

d(xj)aj(x)2−j =
∞∑
j=1

ΔM(4jn− 1)2−j = 1,

where the last equality holds according to Corollary 2. Applying the above equation to (4.3), we complete 
the proof. �
4.1. Auxiliary lemmas

Now, we prove some auxiliary lemmas, which are used in the calculation of the box dimension of the 
graph of the function λ(x). For every k ≥ 1 and 0 ≤ z < 4k, where z ∈ N, let

Ik(z) := [z4−k, (z + 1)4−k).

Then [0, 1) =
⋃

0≤z<4k Ik(z). Let z
4k =

∑k
j=1 zj4−j denote the 4-adic expansion of z4−k. If y =

∑∞
j=1 yj4−j ∈

Ik(z), then yi = zi for i = 1, 2, · · · , k.
First, we determine the difference of values of a(·) at the end points of a 4-adic interval Ik(z).

Lemma 8. Let k ≥ 1 and z ∈ N with 1 ≤ z < 4k. Then

a(z4−k) − a((z + 1)4−k) =
{
−2−k, if z ≤ 4k − 2,
1 − 2−k, if z = 4k − 1.

Proof. When z = 4k − 1, we have z4−k =
∑k

j=1 3 · 4−j and (z + 1)4−k = 1. So

a(z4−k) − a((z + 1)4−k) = (2 − 2−k) − 1 = 1 − 2−k.

When 1 ≤ z ≤ 4−k − 2, z4−k and (z + 1)4−k have the 4-adic expansions

z4−k =
k∑

j=1
zj4−j and (z + 1)4−k =

k∑
j=1

z′j4−j .

Implicitly, we assume that zj = z′j = 0 for j > k. Let 1 ≤ h ≤ k be the integer such that zh �= 3 and zj = 3
for j = h + 1, · · · , k. Then
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z′j =

⎧⎪⎪⎨⎪⎪⎩
zj , when j < h,

zj + 1, when j = h,

0, when j > h.

Set Dj := d(zj)aj(z4−k) − d(z′j)aj((z + 1)4−k). Then

a(z4−k) − a((z + 1)4−k) =
∞∑
j=1

D(j)2−j .

Clearly, Dj = 0 when j < h or j > k. Since aj(z4−k) = aj((z + 1)4−k) = 1 for h + 2 ≤ j ≤ k, we have for 
h + 2 ≤ j ≤ k,

Dj = d(3) − d(0) = 1.

Set u := 4h
∑h

j=1 zj4−j . If u ≥ 1, we have

Dh + 2−1Dh+1 = (d(zh)ΔM(u− 1) − d(z′h)ΔM(u))

+ 2−1 (d(3)ΔM(4u + 2) − d(0) · ΔM(4u + 3))

= d(zh)ΔM(u− 1) − d(z′h)ΔM(u) + ΔM(u) − 2−1

=

⎧⎪⎪⎨⎪⎪⎩
d(0) · 1 − d(1) · (−1) + (−1) − 2−1, if zh = 0,
d(1) · (−1) − d(2) · ΔM(u) + ΔM(u) − 2−1, if zh = 1,
d(2) · ΔM(u) − d(3) · ΔM(u) + ΔM(u) − 2−1, if zh = 2,

= −2−1.

If u = 0, then zh = 0 and

Dh + 2−1Dh+1 = d(0) · (−1) − d(1)ΔM(0)

+ 2−1 (d(3)ΔM(2) − d(0)ΔM(3))

= −2−1.

Therefore,

a(z4−k) − a((z + 1)4−k) =
∞∑
j=1

D(j)2−j

= 2−hDh + 2−h−1Dh+1 +
k∑

j=h+2

D(j)2−j

= −2−h−1 +
(
2−h−1 − 2−k

)
= −2−k. �

Lemma 9. There exists c > 0, such that for every x, y ∈ (0, 1),

|a(x) − a(y)| ≤ c|x− y|1/2.
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Proof. Let x, y ∈ (0, 1) and x < y. Let

∞∑
j=1

xj4−j and
∞∑
j=1

yj4−j

denote the 4-adic expansions of x and y. Set Dj := d(xj)aj(x) − d(yj)aj(y). Then |Dj | ≤ 4 for j ≥ 1.
Let k be the integer such that 4−k−1 ≤ y − x < 4−k. Then x and y can be covered by at most two 

(adjacent) 4-adic intervals of level k. Suppose x, y ∈ Ik(z) for some 0 ≤ z < 4k. Then xj = yj for 
i = 1, 2, · · · , k. Consequently, Dj = 0 for 1 ≤ j ≤ k. So

|a(x) − a(y)| =

∣∣∣∣∣∣
∞∑

j=k+1

Dj2−j

∣∣∣∣∣∣
≤ 4

∞∑
j=k+1

2−j = 4 · 2−k

≤ 8|x− y|1/2.

On the other hand, suppose x ∈ Ik(z) and y ∈ Ik(z + 1), where 0 ≤ z < 4k − 1. Let h be the largest 
integer such that x, y ∈ Ih(z′) for some 0 ≤ z′ < 4h. Clearly, 0 ≤ h < k. In this case, the 4-adic expansions 
of x and y satisfy ⎧⎪⎪⎨⎪⎪⎩

yj = xj , if 1 ≤ j ≤ h,

yj = xj + 1, if j = h + 1,
yj = 0 and xj = 3, if h + 2 ≤ j ≤ k.

(We remark that xh+1 �= 3 by the choice of h.) Hence, Dj = 0 for 1 ≤ j ≤ h. Similar discussions as in 
Lemma 8 yield

Dh+1 + 2−1Dh+2 = −2−1.

Moreover, for h + 3 ≤ j ≤ k, Dj = d(3) − d(0) = 1. Therefore,

|a(x) − a(y)| =

∣∣∣∣∣∣
∞∑
j=1

Dj2−j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k∑

j=h+1

Dj2−j +
∞∑

j=k+1

Dj2−j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣2−h−1(Dh+1 + 2−1Dh+2) +
k∑

j=h+3

Dj2−j

∣∣∣∣∣∣ + 4
∞∑

j=k+1

2−j

= 5 · 2−k ≤ 10|x− y|1/2. �
4.2. Calculation of the box dimension

Theorem 3. For every 0 < α < β ≤ 1,

dimB{(x, λ(x)) : α < x < β} = 3
2 .
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Proof. For every x, y ∈ (α, β) and x < y, ρ(x) = ρ(y) = ρ(0) = 1,

|λ(x) − λ(y)| =
∣∣∣∣ρ(x) + a(x)√

x
− ρ(y) + a(y)

√
y

∣∣∣∣
=

∣∣∣∣a(x) + 1√
x

− a(y) + 1
√
y

∣∣∣∣
=

∣∣∣∣a(x) − a(y)√
x

+
√
y −√

x
√
xy

(a(y) + 1)
∣∣∣∣

≤ α−1/2|a(x) − a(y)| + 3α−1√y − x

≤ (cα−1/2 + 3α−1)|x− y|1/2,

where the last inequality holds by Lemma 9. Now by [8, Corollary 11.2 (a)],

dimB{(x, λ(x)) : α < x < β} ≤ 3
2 . (4.4)

For every k ≥ 1, let Nk be the number of 4−k-mesh squares that intersect the graph of λ(x) on (α, β). 
For every k ≥ 1 and �α4k	 < z ≤ �β4k	, the number of 4−k-mesh squares that intersect the graph of λ(x)
on Ik(z) is larger than 

∣∣λ((z + 1)4−k) − λ(z4−k)
∣∣ /4−k. Choose K1 large enough such that for all k > K1, 

3 · 2k < �α4k	 (< z). Then, by Lemma 8,

∣∣λ((z + 1)4−k) − λ(z4−k)
∣∣ =

∣∣∣∣∣1 + a((z + 1)4−k)√
(z + 1)4−k

− 1 + a(z4−k)√
z4−k

∣∣∣∣∣
= 1√

z4−k

∣∣a((z + 1)4−k) − a(z4−k)

+
√
z4−k −

√
(z + 1)4−k√

(z + 1)4−k
(1 + a((z + 1)4−k)) |

≥ 1√
β

(
2−k −

∣∣1 + a((z + 1)4−k)
∣∣

z + 1 +
√
z2 + z

)

≥ 2−k · 1√
β

(
1 − 3 · 2k

z + 1 +
√
z2 + z

)
>

1
2
√
β
· 2−k.

Choose K2 large enough such that for all k > K2, �β4k	 − �α4k	 − 1 > 4k(β − α)/2. Hence, for every 
k > max{K1, K2},

Nk ≥
∑

	α4k
<z<	β4k


∣∣λ((z + 1)4−k) − λ(z4−k)
∣∣

4−k

≥ 1
2
√
β

∑
	α4k
<z<	β4k


2−k

4−k
= �β4k	 − �α4k	 − 1

2
√
β

· 2k

>
β − α

4
√
β

· 23k.

Therefore,
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dimB{(x, λ(x)) : α < x < β} = lim inf
k→∞

logNk

− log 4−k

≥ lim inf
k→∞

log
(
23k(β − α)/4

√
β
)

− log 4−k
= 3

2 . (4.5)

The result follows from (4.4) and (4.5). �
Corollary 3. For every 0 < α < β,

dimB{(x, λ(x)) : α < x < β} = 3
2 .

Proof. Let K be an integer such that β/4K ≤ 1. Since λ(4x) = λ(x) for x > 0, the following mapping

f : (x, λ(x)) 
→ (4Kx, λ(4Kx))

is a bi-Lipschitz mapping in R2, and

f
(
{(x, λ(x)) : 4−Kα < x < 4−Kβ}

)
=

{(
4Kx, λ(4Kx)

)
: 4−Kα < x < 4−Kβ

}
= {(y, λ(y)) : α < y < β}.

The result follows from Theorem 3 and the above equation. �
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